Topological Phases Derived from Discrete Higher Gauge Theory and Representations of the Loop Braid Group

Quantum Computation and Information Workshop. Texas A\&M University

$$
\text { September 22, } 2018
$$

João Faria Martins (University of Leeds)

LEVERHULME

TRUST

Partially funded by the Leverhulme Trust research project grant:
RPG-2018-029: "Emergent Physics From Lattice Models of Higher Gauge Theory"

(Discrete) gauge theory and holonomy

Let M be a manifold.

(Discrete) gauge theory and holonomy

- Let M be a manifold.
- A path in M is a piecewise smooth map $\gamma:[0,1] \rightarrow M$. We consider paths up to homotopy, relative to the end-points.

(Discrete) gauge theory and holonomy

- Let M be a manifold.
- A path in M is a piecewise smooth map $\gamma:[0,1] \rightarrow M$. We consider paths up to homotopy, relative to the end-points. - Denote paths as ($x \rightarrow y$),

(Discrete) gauge theory and holonomy

- Let M be a manifold.
- A path in M is a piecewise smooth map $\gamma:[0,1] \rightarrow M$. We consider paths up to homotopy, relative to the end-points.
- Denote paths as $(x \rightarrow y)$, x and y are initial and end-points.

(Discrete) gauge theory and holonomy

- Let M be a manifold.
- A path in M is a piecewise smooth map $\gamma:[0,1] \rightarrow M$. We consider paths up to homotopy, relative to the end-points.
- Denote paths as $(x \xrightarrow{\gamma} y)$, x and y are initial and end-points.

(Discrete) gauge theory and holonomy

- Let M be a manifold.
- A path in M is a piecewise smooth map $\gamma:[0,1] \rightarrow M$. We consider paths up to homotopy, relative to the end-points.
- Denote paths as $(x \xrightarrow{\gamma} y), x$ and y are initial and end-points.
- Paths $(x \rightarrow y)$ and $(y \longrightarrow z)$ can be concatenated into another path

(Discrete) gauge theory and holonomy

- Let M be a manifold.
- A path in M is a piecewise smooth map $\gamma:[0,1] \rightarrow M$. We consider paths up to homotopy, relative to the end-points.
- Denote paths as $(x \xrightarrow{\gamma} y), x$ and y are initial and end-points.
- Paths $(x \xrightarrow{\gamma} y)$ and $\left(y \xrightarrow{\gamma^{\prime}} z\right)$ can be concatenated into another path

$$
(x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)=\left(x \xrightarrow{\gamma \gamma^{\prime}} z\right) .
$$

(Discrete) gauge theory and holonomy

- Let M be a manifold.
- A path in M is a piecewise smooth map $\gamma:[0,1] \rightarrow M$. We consider paths up to homotopy, relative to the end-points.
- Denote paths as $(x \xrightarrow{\gamma} y), x$ and y are initial and end-points.
- Paths $(x \xrightarrow{\gamma} y)$ and $\left(y \xrightarrow{\gamma^{\prime}} z\right)$ can be concatenated into another path

$$
(x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)=\left(x \xrightarrow{\gamma \gamma^{\prime}} z\right) .
$$

(Discrete) gauge theory and holonomy

- Let M be a manifold.
- A path in M is a piecewise smooth map $\gamma:[0,1] \rightarrow M$. We consider paths up to homotopy, relative to the end-points.
- Denote paths as $(x \xrightarrow{\gamma} y), x$ and y are initial and end-points.
- Paths $(x \xrightarrow{\gamma} y)$ and $\left(y \xrightarrow{\gamma^{\prime}} z\right)$ can be concatenated into another path

$$
(x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)=\left(x \xrightarrow{\gamma \gamma^{\prime}} z\right) .
$$

(Discrete) gauge theory and holonomy

- Let M be a manifold.
- A path in M is a piecewise smooth map $\gamma:[0,1] \rightarrow M$. We consider paths up to homotopy, relative to the end-points.
- Denote paths as $(x \xrightarrow{\gamma} y), x$ and y are initial and end-points.
- Paths $(x \xrightarrow{\gamma} y)$ and $\left(y \xrightarrow{\gamma^{\prime}} z\right)$ can be concatenated into another path

$$
(x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)=\left(x \xrightarrow{\gamma \gamma^{\prime}} z\right) .
$$

- Given a subset $M^{0} \subset M$, we utilize the groupoid: $\Pi_{1}\left(M, M^{0}\right)$

(Discrete) gauge theory and holonomy

- Let M be a manifold.
- A path in M is a piecewise smooth map $\gamma:[0,1] \rightarrow M$. We consider paths up to homotopy, relative to the end-points.
- Denote paths as $(x \xrightarrow{\gamma} y), x$ and y are initial and end-points.
- Paths $(x \xrightarrow{\gamma} y)$ and $\left(y \xrightarrow{\gamma^{\prime}} z\right)$ can be concatenated into another path

$$
(x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)=\left(x \xrightarrow{\gamma \gamma^{\prime}} z\right) .
$$

- Given a subset $M^{0} \subset M$, we utilize the groupoid: $\Pi_{1}\left(M, M^{0}\right)$
- Set of objects is M^{0}.

(Discrete) gauge theory and holonomy

- Let M be a manifold.
- A path in M is a piecewise smooth map $\gamma:[0,1] \rightarrow M$. We consider paths up to homotopy, relative to the end-points.
- Denote paths as $(x \xrightarrow{\gamma} y), x$ and y are initial and end-points.
- Paths $(x \xrightarrow{\gamma} y)$ and $\left(y \xrightarrow{\gamma^{\prime}} z\right)$ can be concatenated into another path

$$
(x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)=\left(x \xrightarrow{\gamma \gamma^{\prime}} z\right) .
$$

- Given a subset $M^{0} \subset M$, we utilize the groupoid: $\Pi_{1}\left(M, M^{0}\right)$
- Set of objects is M^{0}. Morphisms $x \rightarrow y$ are paths from x to y.

Gauge Theory and Holonomy

Gauge Theory and Holonomy

Let G be a group. G will be finite throughout. M a manifold

Gauge Theory and Holonomy

Let G be a group. G will be finite throughout. M a manifold.

Gauge Theory and Holonomy

Let G be a group. G will be finite throughout. M a manifold.
Given a principal G-bundle $P \rightarrow M$, and local trivialisations,
we have the parallel transport of P.

Gauge Theory and Holonomy

Let G be a group. G will be finite throughout. M a manifold. Given a principal G-bundle $P \rightarrow M$, and local trivialisations, we have the parallel transport of P.

Gauge Theory and Holonomy

Let G be a group. G will be finite throughout. M a manifold. Given a principal G-bundle $P \rightarrow M$, and local trivialisations, we have the parallel transport of P.
$\mathcal{F}:\{$ Paths in $M\} \rightarrow G$

Gauge Theory and Holonomy

Let G be a group. G will be finite throughout. M a manifold. Given a principal G-bundle $P \rightarrow M$, and local trivialisations, we have the parallel transport of P.

$$
\mathcal{F}:\{\text { Paths in } M\} \rightarrow G
$$

Gauge Theory and Holonomy

Let G be a group. G will be finite throughout. M a manifold. Given a principal G-bundle $P \rightarrow M$, and local trivialisations, we have the parallel transport of P.

$$
\begin{aligned}
\mathcal{F}:\{\text { Paths } \quad \text { in } M\} & \rightarrow G \\
& \gamma \longmapsto \operatorname{hol}^{1}(\gamma)=g_{\gamma} \in G
\end{aligned}
$$

Gauge Theory and Holonomy

Let G be a group. G will be finite throughout. M a manifold. Given a principal G-bundle $P \rightarrow M$, and local trivialisations, we have the parallel transport of P.

$$
\begin{aligned}
\mathcal{F}:\{\text { Paths in } M\} & \rightarrow G \\
& \gamma \longmapsto \operatorname{hol}^{1}(\gamma)=g_{\gamma} \in G
\end{aligned}
$$

(Parallel transport is also called "holonomy".)
Recall parallel transport preserves concatenation of paths:

$$
\mathcal{F}\left((x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)\right)=\mathcal{F}(x \xrightarrow{\gamma} y) \mathcal{F}\left(y \xrightarrow{\gamma^{\prime}} z\right)
$$

and \mathcal{F} completely determines P.

Gauge Theory and Holonomy

Let G be a group. G will be finite throughout. M a manifold. Given a principal G-bundle $P \rightarrow M$, and local trivialisations, we have the parallel transport of P.

$$
\begin{aligned}
& \mathcal{F}:\{\text { Paths in } M\} \rightarrow G \\
& \gamma \longmapsto \operatorname{hol}^{1}(\gamma)=g_{\gamma} \in G
\end{aligned}
$$

(Parallel transport is also called "holonomy".) Recall parallel transport preserves concatenation of paths:

$$
\mathcal{F}\left((x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)\right)=\mathcal{F}(x \xrightarrow{\gamma} y) \mathcal{F}\left(y \xrightarrow{\gamma^{\prime}} z\right)
$$

Let $M^{0} \subset M$. Principal G-bundles P hence give rise to functors

$$
\mathcal{F}: \Pi_{1}\left(M, M^{0}\right) \rightarrow G
$$

and \mathcal{F} completely determines P.

Gauge Theory and Holonomy

Let G be a group. G will be finite throughout. M a manifold. Given a principal G-bundle $P \rightarrow M$, and local trivialisations, we have the parallel transport of P.

$$
\begin{aligned}
\mathcal{F}:\{\text { Paths } \quad \text { in } M\} & \rightarrow G \\
& \gamma \longmapsto \operatorname{hol}^{1}(\gamma)=g_{\gamma} \in G
\end{aligned}
$$

(Parallel transport is also called "holonomy".) Recall parallel transport preserves concatenation of paths:

$$
\mathcal{F}\left((x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)\right)=\mathcal{F}(x \xrightarrow{\gamma} y) \mathcal{F}\left(y \xrightarrow{\gamma^{\prime}} z\right)
$$

Let $M^{0} \subset M$. Principal G-bundles P hence give rise to functors

$$
\mathcal{F}: \Pi_{1}\left(M, M^{0}\right) \rightarrow G
$$

and \mathcal{F} completely determines P.

Gauge Theory and Holonomy

Let G be a group. G will be finite throughout. M a manifold. Given a principal G-bundle $P \rightarrow M$, and local trivialisations, we have the parallel transport of P.

$$
\begin{aligned}
\mathcal{F}:\{\text { Paths in } M\} & \rightarrow G \\
& \gamma \longmapsto \operatorname{hol}^{1}(\gamma)=g_{\gamma} \in G
\end{aligned}
$$

(Parallel transport is also called "holonomy".) Recall parallel transport preserves concatenation of paths:

$$
\mathcal{F}\left((x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)\right)=\mathcal{F}(x \xrightarrow{\gamma} y) \mathcal{F}\left(y \xrightarrow{\gamma^{\prime}} z\right)
$$

Let $M^{0} \subset M$. Principal G-bundles P hence give rise to functors

$$
\mathcal{F}: \Pi_{1}\left(M, M^{0}\right) \rightarrow G
$$

and \mathcal{F} completely determines P.

Gauge Theory and Holonomy

Let G be a group. G will be finite throughout. M a manifold. Given a principal G-bundle $P \rightarrow M$, and local trivialisations, we have the parallel transport of P.

$$
\begin{aligned}
\mathcal{F}:\{\text { Paths } \quad \text { in } M\} & \rightarrow G \\
& \gamma \longmapsto \operatorname{hol}^{1}(\gamma)=g_{\gamma} \in G
\end{aligned}
$$

(Parallel transport is also called "holonomy".)
Recall parallel transport preserves concatenation of paths:

$$
\mathcal{F}\left((x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)\right)=\mathcal{F}(x \xrightarrow{\gamma} y) \mathcal{F}\left(y \xrightarrow{\gamma^{\prime}} z\right)
$$

Let $M^{0} \subset M$. Principal G-bundles P hence give rise to functors

$$
\mathcal{F}: \Pi_{1}\left(M, M^{0}\right) \rightarrow G
$$

and \mathcal{F} completely determines P.
NB: must specify elements $p_{v} \in F_{v}$, the fibre of P at $v \in M^{0}$.

Gauge Theory and Holonomy

Let G be a group. G will be finite throughout. M a manifold. Given a principal G-bundle $P \rightarrow M$, and local trivialisations, we have the parallel transport of P.

$$
\begin{aligned}
\mathcal{F}:\{\text { Paths } \quad \text { in } M\} & \rightarrow G \\
& \gamma \longmapsto \operatorname{hol}^{1}(\gamma)=g_{\gamma} \in G
\end{aligned}
$$

(Parallel transport is also called "holonomy".)
Recall parallel transport preserves concatenation of paths:

$$
\mathcal{F}\left((x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)\right)=\mathcal{F}(x \xrightarrow{\gamma} y) \mathcal{F}\left(y \xrightarrow{\gamma^{\prime}} z\right)
$$

Let $M^{0} \subset M$. Principal G-bundles P hence give rise to functors

$$
\mathcal{F}: \Pi_{1}\left(M, M^{0}\right) \rightarrow G
$$

and \mathcal{F} completely determines P.
NB: must specify elements $p_{v} \in F_{v}$, the fibre of P at $v \in M^{0}$. If G is a Lie group, we need G-connection A in P.

Gauge Theory and Holonomy

Let G be a group. G will be finite throughout. M a manifold. Given a principal G-bundle $P \rightarrow M$, and local trivialisations, we have the parallel transport of P.

$$
\begin{aligned}
\mathcal{F}:\{\text { Paths } \quad \text { in } M\} & \rightarrow G \\
& \gamma \longmapsto \operatorname{hol}^{1}(\gamma)=g_{\gamma} \in G
\end{aligned}
$$

(Parallel transport is also called "holonomy".)
Recall parallel transport preserves concatenation of paths:

$$
\mathcal{F}\left((x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)\right)=\mathcal{F}(x \xrightarrow{\gamma} y) \mathcal{F}\left(y \xrightarrow{\gamma^{\prime}} z\right)
$$

Let $M^{0} \subset M$. Principal G-bundles P hence give rise to functors

$$
\mathcal{F}: \Pi_{1}\left(M, M^{0}\right) \rightarrow G
$$

and \mathcal{F} completely determines P.
NB: must specify elements $p_{v} \in F_{v}$, the fibre of P at $v \in M^{0}$. If G is a Lie group, we need G-connection A in P.
Locally $A \in \Omega^{1}(M, \mathfrak{g})$.

Gauge Theory and Holonomy

Conversely, G-connections can be defined from their holonomy. If G is finite, and M compact, we only need to know the holonomy along a finite number of paths. The theory becomes combinatorial.

Gauge Theory and Holonomy

Conversely, G-connections can be defined from their holonomy. If G is finite, and M compact, we only need to know the holonomy along a finite number of paths. The theory becomes combinatorial. Combinatorially, a G-connection over M looks like:

Gauge Theory and Holonomy

Conversely, G-connections can be defined from their holonomy. If G is finite, and M compact, we only need to know the holonomy along a finite number of paths. The theory becomes combinatorial.

Gauge Theory and Holonomy

Conversely, G-connections can be defined from their holonomy. If G is finite, and M compact, we only need to know the holonomy along a finite number of paths. The theory becomes combinatorial. Combinatorially, a G-connection over M looks like:

Gauge Theory and Holonomy

Conversely, G-connections can be defined from their holonomy. If G is finite, and M compact, we only need to know the holonomy along a finite number of paths. The theory becomes combinatorial. Combinatorially, a G-connection over M looks like:

where $a, b, c, d, e, f, g \in G$.

There are relations that must be satisfied on triangles.

Gauge Theory and Holonomy

Conversely, G-connections can be defined from their holonomy. If G is finite, and M compact, we only need to know the holonomy along a finite number of paths. The theory becomes combinatorial. Combinatorially, a G-connection over M looks like:

where $a, b, c, d, e, f, g \in G$.
There are relations that must be satisfied on triangles. The holonomy around each should be trivial.

Gauge Theory and Holonomy

Conversely, G-connections can be defined from their holonomy. If G is finite, and M compact, we only need to know the holonomy along a finite number of paths. The theory becomes combinatorial. Combinatorially, a G-connection over M looks like:

where $a, b, c, d, e, f, g \in G$.

There are relations that must be satisfied on triangles.

Gauge Theory and Holonomy

Conversely, G-connections can be defined from their holonomy. If G is finite, and M compact, we only need to know the holonomy along a finite number of paths. The theory becomes combinatorial. Combinatorially, a G-connection over M looks like:

where $a, b, c, d, e, f, g \in G$.
There are relations that must be satisfied on triangles.
The holonomy around each should be trivial.

Kitaev Quantum Double Model

- Let M be a manifold with a decomposition L into 'cells':

Kitaev Quantum Double Model

- Let M be a manifold with a decomposition L into 'cells':
vertices

Kitaev Quantum Double Model

- Let M be a manifold with a decomposition L into 'cells': vertices $v \in L^{0}$,

Kitaev Quantum Double Model

- Let M be a manifold with a decomposition L into 'cells': vertices $v \in L^{0}$, edges $t \in L^{1}$,

Kitaev Quantum Double Model

- Let M be a manifold with a decomposition L into 'cells': vertices $v \in L^{0}$, edges $t \in L^{1}$, plaquettes $P \in L^{2}$,

Kitaev Quantum Double Model

- Let M be a manifold with a decomposition L into 'cells': vertices $v \in L^{0}$, edges $t \in L^{1}$, plaquettes $P \in L^{2}$, blobs $b \in L^{3}$

Kitaev Quantum Double Model

- Let M be a manifold with a decomposition L into 'cells': vertices $v \in L^{0}$, edges $t \in L^{1}$, plaquettes $P \in L^{2}$, blobs $b \in L^{3}$
- Concretely consider a manifold with a CW-decomposition.

Kitaev Quantum Double Model

- Let M be a manifold with a decomposition L into 'cells': vertices $v \in L^{0}$, edges $t \in L^{1}$, plaquettes $P \in L^{2}$, blobs $b \in L^{3}$
- Concretely consider a manifold with a CW-decomposition.

Kitaev Quantum Double Model

- Let M be a manifold with a decomposition L into 'cells': vertices $v \in L^{0}$, edges $t \in L^{1}$, plaquettes $P \in L^{2}$, blobs $b \in L^{3}$
- Concretely consider a manifold with a CW-decomposition.
- All cells c have a base-point $v_{c} \in L^{0}$.

Kitaev Quantum Double Model

- Let M be a manifold with a decomposition L into 'cells': vertices $v \in L^{0}$, edges $t \in L^{1}$, plaquettes $P \in L^{2}$, blobs $b \in L^{3}$
- Concretely consider a manifold with a CW-decomposition.
- All cells c have a base-point $v_{c} \in L^{0}$.
- We let $M^{i} \subset M$ be the union of all cells of dimension $\leq i$.
- A plaquette $P \in L^{2}$ attaches to M^{1} along $\partial_{L}(P) \in \pi_{1}\left(M^{1}, M^{0}\right)$

Kitaev Quantum Double Model

- Let M be a manifold with a decomposition L into 'cells': vertices $v \in L^{0}$, edges $t \in L^{1}$, plaquettes $P \in L^{2}$, blobs $b \in L^{3}$
- Concretely consider a manifold with a CW-decomposition.
- All cells c have a base-point $v_{c} \in L^{0}$.
- We let $M^{i} \subset M$ be the union of all cells of dimension $\leq i$.
- A plaquette $P \in L^{2}$ attaches to M^{1} along $\partial_{L}(P) \in \pi_{1}\left(M^{1}, M^{0}\right)$.

Kitaev Quantum Double Model

- Let M be a manifold with a decomposition L into 'cells': vertices $v \in L^{0}$, edges $t \in L^{1}$, plaquettes $P \in L^{2}$, blobs $b \in L^{3}$
- Concretely consider a manifold with a CW-decomposition.
- All cells c have a base-point $v_{c} \in L^{0}$.
- We let $M^{i} \subset M$ be the union of all cells of dimension $\leq i$.
- A plaquette $P \in L^{2}$ attaches to M^{1} along $\partial_{L}(P) \in \pi_{1}\left(M^{1}, M^{0}\right)$.

Kitaev Quantum Double Model

- Let M be a manifold with a decomposition L into 'cells': vertices $v \in L^{0}$, edges $t \in L^{1}$, plaquettes $P \in L^{2}$, blobs $b \in L^{3}$
- Concretely consider a manifold with a CW-decomposition.
- All cells c have a base-point $v_{c} \in L^{0}$.
- We let $M^{i} \subset M$ be the union of all cells of dimension $\leq i$.
- A plaquette $P \in L^{2}$ attaches to M^{1} along $\partial_{L}(P) \in \pi_{1}\left(M^{1}, M^{0}\right)$.

$$
\partial_{L}(P)=\left(v_{P} \xrightarrow{\gamma_{4}^{-1} \gamma_{3} \gamma_{2} \gamma_{1}} v_{P}\right)
$$

Kitaev Quantum Double Model

- Let M be a manifold with a decomposition L into 'cells': vertices $v \in L^{0}$, edges $t \in L^{1}$, plaquettes $P \in L^{2}$, blobs $b \in L^{3}$
- Concretely consider a manifold with a CW-decomposition.
- All cells c have a base-point $v_{c} \in L^{0}$.
- We let $M^{i} \subset M$ be the union of all cells of dimension $\leq i$.
- A plaquette $P \in L^{2}$ attaches to M^{1} along $\partial_{L}(P) \in \pi_{1}\left(M^{1}, M^{0}\right)$.

$$
\partial_{L}(P)=\left(v_{P} \xrightarrow{\gamma_{4}^{-1} \gamma_{3} \gamma_{2} \gamma_{1}} v_{P}\right)
$$

- Functors $\mathcal{F}: \Pi_{1}\left(M^{1}, M^{0}\right) \rightarrow G$ are the same as maps $L^{1} \rightarrow G$.

Kitaev Quantum Double Model

- Let M be a manifold with a decomposition L into 'cells': vertices $v \in L^{0}$, edges $t \in L^{1}$, plaquettes $P \in L^{2}$, blobs $b \in L^{3}$
- Concretely consider a manifold with a CW-decomposition.
- All cells c have a base-point $v_{c} \in L^{0}$.
- We let $M^{i} \subset M$ be the union of all cells of dimension $\leq i$.
- A plaquette $P \in L^{2}$ attaches to M^{1} along $\partial_{L}(P) \in \pi_{1}\left(M^{1}, M^{0}\right)$.

$$
\partial_{L}(P)=\left(v_{P} \xrightarrow{\gamma_{4}^{-1} \gamma_{3} \gamma_{2} \gamma_{1}} v_{P}\right)
$$

- Functors $\mathcal{F}: \Pi_{1}\left(M^{1}, M^{0}\right) \rightarrow G$ are the same as maps $L^{1} \rightarrow G$.

Functors $\mathcal{F}: \Pi_{1}\left(M, M^{0}\right) \rightarrow G$ are functors $\mathcal{F}: \Pi_{1}\left(M^{1}, M^{0}\right) \rightarrow G$

Kitaev Quantum Double Model

- Let M be a manifold with a decomposition L into 'cells': vertices $v \in L^{0}$, edges $t \in L^{1}$, plaquettes $P \in L^{2}$, blobs $b \in L^{3}$
- Concretely consider a manifold with a CW-decomposition.
- All cells c have a base-point $v_{c} \in L^{0}$.
- We let $M^{i} \subset M$ be the union of all cells of dimension $\leq i$.
- A plaquette $P \in L^{2}$ attaches to M^{1} along $\partial_{L}(P) \in \pi_{1}\left(M^{1}, M^{0}\right)$.

$$
\partial_{L}(P)=\left(v_{P} \xrightarrow{\gamma_{4}^{-1} \gamma_{3} \gamma_{2} \gamma_{1}} v_{P}\right)
$$

- Functors $\mathcal{F}: \Pi_{1}\left(M^{1}, M^{0}\right) \rightarrow G$ are the same as maps $L^{1} \rightarrow G$.

Functors $\mathcal{F}: \Pi_{1}\left(M, M^{0}\right) \rightarrow G$ are functors $\mathcal{F}: \Pi_{1}\left(M^{1}, M^{0}\right) \rightarrow G$

Kitaev Quantum Double Model

Kitaev Quantum Double Model

- We define:
$V(M, L)=\mathbb{C}$ hom $\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)=\mathbb{C}\left\{\right.$ Functions $\left.L^{1} \rightarrow G\right\}$ $T(M, L)=\prod_{v \in L^{0}} G=\left\{\right.$ Functions $\left.L^{0} \rightarrow G\right\}$,

Kitaev Quantum Double Model

- We define:
$V(M, L)=\mathbb{C} \operatorname{hom}\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)$
$\Rightarrow T(M, L)=\prod_{v \in L^{0}} G=\left\{\right.$ Functions $\left.L^{0} \rightarrow G\right\}$,

Kitaev Quantum Double Model

- We define:

$$
V(M, L)=\mathbb{C} \operatorname{hom}\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)=\mathbb{C}\left\{\text { Functions } L^{1} \rightarrow G\right\} .
$$

Kitaev Quantum Double Model

- We define:
$V(M, L)=\mathbb{C}$ hom $\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)=\mathbb{C}\left\{\right.$ Functions $\left.L^{1} \rightarrow G\right\}$.
- $T(M, L)=\prod_{v \in L^{0}} G=\left\{\right.$ Functions $\left.L^{0} \rightarrow G\right\}$,

Kitaev Quantum Double Model

- We define:
$V(M, L)=\mathbb{C}$ hom $\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)=\mathbb{C}\left\{\right.$ Functions $\left.L^{1} \rightarrow G\right\}$.
- $T(M, L)=\prod_{v \in L^{0}} G=\left\{\right.$ Functions $\left.L^{0} \rightarrow G\right\}$, the group of gauge operators U.

operator (called vertex operator) such that:

Kitaev Quantum Double Model

- We define:

$$
V(M, L)=\mathbb{C} \operatorname{hom}\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)=\mathbb{C}\left\{\text { Functions } L^{1} \rightarrow G\right\} .
$$

- $T(M, L)=\prod_{v \in L^{0}} G=\left\{\right.$ Functions $\left.L^{0} \rightarrow G\right\}$, the group of gauge operators U.
- Given $v \in L^{0}, g \in G$, put $U_{v}^{g} \in T(M, L)$ to be the gauge operator (called vertex operator) such that:
$U_{v}^{g}(x)=\left\{\begin{array}{l}g, \text { if } x=v \\ 1_{G}, \text { otherwise }\end{array}\right.$

Kitaev Quantum Double Model

- We define:

$$
V(M, L)=\mathbb{C} \operatorname{hom}\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)=\mathbb{C}\left\{\text { Functions } L^{1} \rightarrow G\right\} .
$$

- $T(M, L)=\prod_{v \in L^{0}} G=\left\{\right.$ Functions $\left.L^{0} \rightarrow G\right\}$, the group of gauge operators U.
- Given $v \in L^{0}, g \in G$, put $U_{v}^{g} \in T(M, L)$ to be the gauge operator (called vertex operator) such that:
$U_{v}^{g}(x)=\left\{\begin{array}{l}g, \text { if } x=v \\ 1_{G}, \text { otherwise }\end{array}\right.$
- Left-action of $T(M, L)$ on $V(M, L)$, by gauge transformations:

Kitaev Quantum Double Model

- We define:

$$
V(M, L)=\mathbb{C} \text { hom }\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)=\mathbb{C}\left\{\text { Functions } L^{1} \rightarrow G\right\} .
$$

- $T(M, L)=\prod_{v \in L^{0}} G=\left\{\right.$ Functions $\left.L^{0} \rightarrow G\right\}$, the group of gauge operators U.
- Given $v \in L^{0}, g \in G$, put $U_{v}^{g} \in T(M, L)$ to be the gauge operator (called vertex operator) such that:
$U_{v}^{g}(x)=\left\{\begin{array}{l}g, \text { if } x=v \\ 1_{G}, \text { otherwise }\end{array}\right.$
- Left-action of $T(M, L)$ on $V(M, L)$, by gauge transformations: Let $\mathcal{F} \in \operatorname{hom}\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)$ and $U \in T(M, L)$

Kitaev Quantum Double Model

- We define:

$$
V(M, L)=\mathbb{C} \operatorname{hom}\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)=\mathbb{C}\left\{\text { Functions } L^{1} \rightarrow G\right\} .
$$

- $T(M, L)=\prod_{v \in L^{0}} G=\left\{\right.$ Functions $\left.L^{0} \rightarrow G\right\}$, the group of gauge operators U.
- Given $v \in L^{0}, g \in G$, put $U_{v}^{g} \in T(M, L)$ to be the gauge operator (called vertex operator) such that:
$U_{v}^{g}(x)=\left\{\begin{array}{l}g, \text { if } x=v \\ 1_{G}, \text { otherwise }\end{array}\right.$
- Left-action of $T(M, L)$ on $V(M, L)$, by gauge transformations: Let $\mathcal{F} \in \operatorname{hom}\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)$ and $U \in T(M, L)$
- $(U . \mathcal{F})(x \xrightarrow{\gamma} y)=U(x) \mathcal{F}(x \xrightarrow{\gamma} y) U(y)^{-1}$.

Kitaev Quantum Double Model

- We define:

$$
V(M, L)=\mathbb{C} \operatorname{hom}\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)=\mathbb{C}\left\{\text { Functions } L^{1} \rightarrow G\right\} .
$$

- $T(M, L)=\prod_{v \in L^{0}} G=\left\{\right.$ Functions $\left.L^{0} \rightarrow G\right\}$, the group of gauge operators U.
- Given $v \in L^{0}, g \in G$, put $U_{v}^{g} \in T(M, L)$ to be the gauge operator (called vertex operator) such that:
$U_{v}^{g}(x)=\left\{\begin{array}{l}g, \text { if } x=v \\ 1_{G}, \text { otherwise }\end{array}\right.$
- Left-action of $T(M, L)$ on $V(M, L)$, by gauge transformations: Let $\mathcal{F} \in \operatorname{hom}\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)$ and $U \in T(M, L)$
- $(U . \mathcal{F})(x \xrightarrow{\gamma} y)=U(x) \mathcal{F}(x \xrightarrow{\gamma} y) U(y)^{-1}$.
- Given a plaquette P and $g \in G$, define the plaquette operator:

Kitaev Quantum Double Model

- We define:

$$
V(M, L)=\mathbb{C} \operatorname{hom}\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)=\mathbb{C}\left\{\text { Functions } L^{1} \rightarrow G\right\} .
$$

- $T(M, L)=\prod_{v \in L^{0}} G=\left\{\right.$ Functions $\left.L^{0} \rightarrow G\right\}$, the group of gauge operators U.
- Given $v \in L^{0}, g \in G$, put $U_{v}^{g} \in T(M, L)$ to be the gauge operator (called vertex operator) such that:
$U_{v}^{g}(x)=\left\{\begin{array}{l}g, \text { if } x=v \\ 1_{G}, \text { otherwise }\end{array}\right.$
- Left-action of $T(M, L)$ on $V(M, L)$, by gauge transformations: Let $\mathcal{F} \in \operatorname{hom}\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)$ and $U \in T(M, L)$
- $(U . \mathcal{F})(x \xrightarrow{\gamma} y)=U(x) \mathcal{F}(x \xrightarrow{\gamma} y) U(y)^{-1}$.
- Given a plaquette P and $g \in G$, define the plaquette operator:

$$
\mathcal{D}_{P}^{g}(\mathcal{F})=\left\{\begin{array}{l}
\mathcal{F}, \text { if } \mathcal{F}\left(v_{P} \xrightarrow{\partial_{L}(P)} v_{P}\right)=g \\
0, \text { otherwise }
\end{array}\right.
$$

The Kitaev Quantum Double Model (quant-ph/9707021)
(Slightly different language, as in 1702.00868 [math-ph]) M with CW-decomposition L.

The Kitaev Quantum Double Model (quant-ph/9707021)
(Slightly different language, as in 1702.00868 [math-ph])
M with CW-decomposition L

The Kitaev Quantum Double Model (quant-ph/9707021)

(Slightly different language, as in 1702.00868 [math-ph]) M with CW-decomposition L.

The Kitaev Quantum Double Model (quant-ph/9707021)

(Slightly different language, as in 1702.00868 [math-ph]) M with CW-decomposition $L . V(M, L)=\mathbb{C}$ hom $\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)$.

The Kitaev Quantum Double Model (quant-ph/9707021)

(Slightly different language, as in 1702.00868 [math-ph]) M with CW-decomposition $L . V(M, L)=\mathbb{C}$ hom $\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)$.
Consider the hamiltonian

The Kitaev Quantum Double Model (quant-ph/9707021)

(Slightly different language, as in 1702.00868 [math-ph]) M with CW-decomposition $L . V(M, L)=\mathbb{C} \operatorname{hom}\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)$.
Consider the hamiltonian $H: V(M, L) \rightarrow V(L, M)$.

The Kitaev Quantum Double Model (quant-ph/9707021)

(Slightly different language, as in 1702.00868 [math-ph]) M with CW-decomposition L. $V(M, L)=\mathbb{C} \operatorname{hom}\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)$.
Consider the hamiltonian $H: V(M, L) \rightarrow V(L, M)$.

$$
H=-
$$

The Kitaev Quantum Double Model (quant-ph/9707021)

(Slightly different language, as in 1702.00868 [math-ph]) M with CW-decomposition L. $V(M, L)=\mathbb{C} \operatorname{hom}\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)$.
Consider the hamiltonian $H: V(M, L) \rightarrow V(L, M)$.

$$
H=-\sum_{v \in L^{0}} \sum_{g \in G} \frac{1}{|G|} U_{v}^{g}-
$$

The Kitaev Quantum Double Model (quant-ph/9707021)

(Slightly different language, as in 1702.00868 [math-ph]) M with CW-decomposition $L . V(M, L)=\mathbb{C}$ hom $\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)$.
Consider the hamiltonian $H: V(M, L) \rightarrow V(L, M)$.

$$
H=-\sum_{v \in L^{\circ}} \sum_{g \in G} \frac{1}{|G|} U_{v}^{g}-\sum_{P \in L^{2}} \mathcal{D}_{P}^{1 G}
$$

The Kitaev Quantum Double Model (quant-ph/9707021)

(Slightly different language, as in 1702.00868 [math-ph]) M with CW-decomposition $L . V(M, L)=\mathbb{C}$ hom $\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)$.
Consider the hamiltonian $H: V(M, L) \rightarrow V(L, M)$.

$$
H=-\sum_{v \in L^{0}} \sum_{g \in G} \frac{1}{|G|} U_{v}^{g}-\sum_{P \in L^{2}} \mathcal{D}_{P}^{1 G}=-\sum_{v \in L^{0}} \mathcal{A}_{v}-\sum_{P \in L^{2}} \mathcal{D}_{P}^{11_{G}}
$$

The Kitaev Quantum Double Model (quant-ph/9707021)

(Slightly different language, as in 1702.00868 [math-ph]) M with CW-decomposition $L . V(M, L)=\mathbb{C}$ hom $\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)$.
Consider the hamiltonian $H: V(M, L) \rightarrow V(L, M)$.

$$
H=-\sum_{v \in L^{0}} \sum_{g \in G} \frac{1}{|G|} U_{v}^{g}-\sum_{P \in L^{2}} \mathcal{D}_{P}^{1 G}=-\sum_{v \in L^{0}} \mathcal{A}_{v}-\sum_{P \in L^{2}} \mathcal{D}_{P}^{1 G}
$$

All the \mathcal{A}_{\vee} and $\mathcal{D}_{P}^{1 G}$ are commuting, self-adjoint, projectors.
Theorem: The ground state $G S(M, L)$ of H is:

The Kitaev Quantum Double Model (quant-ph/9707021)

(Slightly different language, as in 1702.00868 [math-ph]) M with CW-decomposition $L . V(M, L)=\mathbb{C}$ hom $\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)$.
Consider the hamiltonian $H: V(M, L) \rightarrow V(L, M)$.

$$
H=-\sum_{v \in L^{0}} \sum_{g \in G} \frac{1}{|G|} U_{v}^{g}-\sum_{P \in L^{2}} \mathcal{D}_{P}^{1 G}=-\sum_{v \in L^{0}} \mathcal{A}_{v}-\sum_{P \in L^{2}} \mathcal{D}_{P}^{1 G}
$$

All the \mathcal{A}_{v} and $\mathcal{D}_{P}^{1 G}$ are commuting, self-adjoint, projectors.
Theorem: The ground state $G S(M, L)$ of H is:

The Kitaev Quantum Double Model (quant-ph/9707021)

(Slightly different language, as in 1702.00868 [math-ph]) M with CW-decomposition $L . V(M, L)=\mathbb{C}$ hom $\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)$.
Consider the hamiltonian $H: V(M, L) \rightarrow V(L, M)$.

$$
H=-\sum_{v \in L^{0}} \sum_{g \in G} \frac{1}{|G|} U_{v}^{g}-\sum_{P \in L^{2}} \mathcal{D}_{P}^{1 G}=-\sum_{v \in L^{0}} \mathcal{A}_{v}-\sum_{P \in L^{2}} \mathcal{D}_{P}^{1 G}
$$

All the \mathcal{A}_{v} and $\mathcal{D}_{P}^{1 G}$ are commuting, self-adjoint, projectors.
Theorem: The ground state $G S(M, L)$ of H is:

$$
G S(M, L)=\left\{\mathcal{F} \in \mathbb{C}\left(\operatorname{hom}\left(\Pi_{1}\left(M, M^{0}\right), G\right): U \triangleright \mathcal{F}=\mathcal{F}, \forall U \in T(L, G)\right\}\right.
$$

$G S(M, L) \cong \mathbb{C}\left\{\right.$ Maps $\left.M \rightarrow B_{G}\right\} /$ homotopy, canonically.

The Kitaev Quantum Double Model (quant-ph/9707021)

(Slightly different language, as in 1702.00868 [math-ph]) M with CW-decomposition $L . V(M, L)=\mathbb{C}$ hom $\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)$.
Consider the hamiltonian $H: V(M, L) \rightarrow V(L, M)$.

$$
\left.H=-\sum_{v \in L^{0}} \sum_{g \in G} \frac{1}{|G|} U_{v}^{g}-\sum_{P \in L^{2}} \mathcal{D}_{P}^{1}\right]^{G}=-\sum_{v \in L^{0}} \mathcal{A}_{v}-\sum_{P \in L^{2}} \mathcal{D}_{P}^{1_{G}}
$$

All the \mathcal{A}_{v} and $\mathcal{D}_{P}^{1 \epsilon}$ are commuting, self-adjoint, projectors.
Theorem: The ground state $G S(M, L)$ of H is:

$$
G S(M, L)=\left\{\mathcal{F} \in \mathbb{C}\left(\operatorname{hom}\left(\Pi_{1}\left(M, M^{0}\right), G\right): U \triangleright \mathcal{F}=\mathcal{F}, \forall U \in T(L, G)\right\}\right.
$$

$G S(M, L) \cong \mathbb{C}\left\{\right.$ Maps $\left.M \rightarrow B_{G}\right\} /$ homotopy, canonically.

The Kitaev Quantum Double Model (quant-ph/9707021)

(Slightly different language, as in 1702.00868 [math-ph]) M with CW-decomposition L. $V(M, L)=\mathbb{C} \operatorname{hom}\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)$.
Consider the hamiltonian $H: V(M, L) \rightarrow V(L, M)$.

$$
\left.H=-\sum_{v \in L^{0}} \sum_{g \in G} \frac{1}{|G|} U_{v}^{g}-\sum_{P \in L^{2}} \mathcal{D}_{P}^{1}\right]^{G}=-\sum_{v \in L^{0}} \mathcal{A}_{v}-\sum_{P \in L^{2}} \mathcal{D}_{P}^{1_{G}}
$$

All the \mathcal{A}_{v} and $\mathcal{D}_{P}^{1 \epsilon}$ are commuting, self-adjoint, projectors.
Theorem: The ground state $G S(M, L)$ of H is:

$$
G S(M, L)=\left\{\mathcal{F} \in \mathbb{C}\left(\operatorname{hom}\left(\Pi_{1}\left(M, M^{0}\right), G\right): U \triangleright \mathcal{F}=\mathcal{F}, \forall U \in T(L, G)\right\}\right.
$$

$G S(M, L) \cong \mathbb{C}\left\{\right.$ Maps $\left.M \rightarrow B_{G}\right\} /$ homotopy, canonically. Here B_{G} is the classifying space of G.

The Kitaev Quantum Double Model (quant-ph/9707021)

(Slightly different language, as in 1702.00868 [math-ph]) M with CW-decomposition L. $V(M, L)=\mathbb{C} \operatorname{hom}\left(\Pi_{1}\left(M^{1}, M^{0}\right), G\right)$.
Consider the hamiltonian $H: V(M, L) \rightarrow V(L, M)$.

$$
H=-\sum_{v \in L^{0}} \sum_{g \in G} \frac{1}{|G|} U_{v}^{g}-\sum_{P \in L^{2}} \mathcal{D}_{P}^{1 G}=-\sum_{v \in L^{0}} \mathcal{A}_{v}-\sum_{P \in L^{2}} \mathcal{D}_{P}^{1 G}
$$

All the \mathcal{A}_{v} and $\mathcal{D}_{P}^{1 G}$ are commuting, self-adjoint, projectors.
Theorem: The ground state $G S(M, L)$ of H is:
$G S(M, L)=\left\{\mathcal{F} \in \mathbb{C}\left(\operatorname{hom}\left(\Pi_{1}\left(M, M^{0}\right), G\right): U \triangleright \mathcal{F}=\mathcal{F}, \forall U \in T(L, G)\right\}\right.$
$G S(M, L) \cong \mathbb{C}\left\{\right.$ Maps $\left.M \rightarrow B_{G}\right\} /$ homotopy, canonically. Here B_{G} is the classifying space of G.

Hence $G S(M, L)=V(M)$ does not depend on L and only on M.

Extension to Higher Gauge Theory

- Higher gauge theory is a higher order version of gauge theory. Higher gauge theory allows us to formalise non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.

Extension to Higher Gauge Theory

- Higher gauge theory is a higher order version of gauge theory.
- Higher gauge theory allows us to formalise non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.

Extension to Higher Gauge Theory

- Higher gauge theory is a higher order version of gauge theory.
- Higher gauge theory allows us to formalise non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.
- Higher order version of a group: a "2-group"

Extension to Higher Gauge Theory

- Higher gauge theory is a higher order version of gauge theory.
- Higher gauge theory allows us to formalise non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.
- Higher order version of a group: a "2-group".
- 2-groups are equivalent to crossed modules.

Extension to Higher Gauge Theory

- Higher gauge theory is a higher order version of gauge theory.
- Higher gauge theory allows us to formalise non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.
- Higher order version of a group: a "2-group".
- 2-groups are equivalent to crossed modules.

Extension to Higher Gauge Theory

- Higher gauge theory is a higher order version of gauge theory.
- Higher gauge theory allows us to formalise non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.
- Higher order version of a group: a "2-group".
- 2-groups are equivalent to crossed modules.

A crossed module of groups $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

Extension to Higher Gauge Theory

- Higher gauge theory is a higher order version of gauge theory.
- Higher gauge theory allows us to formalise non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.
- Higher order version of a group: a "2-group".
- 2-groups are equivalent to crossed modules.

A crossed module of groups $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- a group map $\partial: E \rightarrow G$,

Extension to Higher Gauge Theory

- Higher gauge theory is a higher order version of gauge theory.
- Higher gauge theory allows us to formalise non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.
- Higher order version of a group: a "2-group".
- 2-groups are equivalent to crossed modules.

A crossed module of groups $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- a group map $\partial: E \rightarrow G$,
- and a left-action of G on E, by automorphisms, such that:

$$
\text { 1. } \partial(g \triangleright e)=g \partial(e) g^{-1} \text {, if } g \in G \text { and } e \in E \text {; }
$$

Extension to Higher Gauge Theory

- Higher gauge theory is a higher order version of gauge theory.
- Higher gauge theory allows us to formalise non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.
- Higher order version of a group: a "2-group".
- 2-groups are equivalent to crossed modules.

A crossed module of groups $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- a group map $\partial: E \rightarrow G$,
- and a left-action of G on E, by automorphisms, such that:

1. $\partial(g \triangleright e)=g \partial(e) g^{-1}$, if $g \in G$ and $e \in E$;

Extension to Higher Gauge Theory

- Higher gauge theory is a higher order version of gauge theory.
- Higher gauge theory allows us to formalise non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.
- Higher order version of a group: a "2-group".
- 2-groups are equivalent to crossed modules.

A crossed module of groups $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- a group map $\partial: E \rightarrow G$,
- and a left-action of G on E, by automorphisms, such that:

1. $\partial(g \triangleright e)=g \partial(e) g^{-1}$, if $g \in G$ and $e \in E$;
2. $\partial(e) \triangleright e^{\prime}=e e^{\prime} e^{-1}$, if $e, e^{\prime} \in E$.

All crossed modules will be finite throughout the talk.

Extension to Higher Gauge Theory

- Higher gauge theory is a higher order version of gauge theory.
- Higher gauge theory allows us to formalise non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.
- Higher order version of a group: a "2-group".
- 2-groups are equivalent to crossed modules.

A crossed module of groups $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- a group map $\partial: E \rightarrow G$,
- and a left-action of G on E, by automorphisms, such that:

1. $\partial(g \triangleright e)=g \partial(e) g^{-1}$, if $g \in G$ and $e \in E$;
2. $\partial(e) \triangleright e^{\prime}=e e^{\prime} e^{-1}$, if $e, e^{\prime} \in E$.

All crossed modules will be finite throughout the talk.

Examples of crossed modules

Let G be a group with a left-action \triangleright on an abelian group A, by automorphisms.
Put $\mathcal{G}=\left(A \xrightarrow{a \in A \mapsto 1_{G}} G, \triangleright\right)$.

Examples of crossed modules

Let G be a group with a left-action \triangleright on an abelian group A, by automorphisms.
Put $\mathcal{G}=\left(A \xrightarrow{a \in A \mapsto 1_{G}} G, \triangleright\right)$.

In the general example above put:

Examples of crossed modules

Let G be a group with a left-action \triangleright on an abelian group A, by automorphisms.
Put $\mathcal{G}=\left(A \xrightarrow{a \in A \mapsto 1_{G}} G, \triangleright\right)$.
In the general example above put:

Examples of crossed modules

Let G be a group with a left-action \triangleright on an abelian group A, by automorphisms.
Put $\mathcal{G}=\left(A \xrightarrow{a \in A \mapsto 1_{G}} G, \triangleright\right)$.
In the general example above put:
$\triangleright G=\{ \pm 1\} . A=\mathbb{Z}_{3} \cdot g \triangleright a=\operatorname{ga}(\bmod 3)$.

Examples of crossed modules

Let G be a group with a left-action \triangleright on an abelian group A, by automorphisms.
Put $\mathcal{G}=\left(A \xrightarrow{a \in A \mapsto 1_{G}} G, \triangleright\right)$.
In the general example above put:

- $G=\{ \pm 1\} . A=\mathbb{Z}_{3} . g \triangleright a=\operatorname{ga}(\bmod 3)$.

Examples of crossed modules

Let G be a group with a left-action \triangleright on an abelian group A, by automorphisms.
Put $\mathcal{G}=\left(A \xrightarrow{a \in A \mapsto 1_{G}} G, \triangleright\right)$.
In the general example above put:

- $G=\{ \pm 1\} . A=\mathbb{Z}_{3} . g \triangleright a=\operatorname{ga}(\bmod 3)$.
- $G=\mathrm{GL}\left(\mathbb{Z}_{p}, n\right)$; i.e. $n \times n$ invertible matrices in \mathbb{Z}_{p}.

Examples of crossed modules

Let G be a group with a left-action \triangleright on an abelian group A, by automorphisms.
Put $\mathcal{G}=\left(A \xrightarrow{a \in A \mapsto 1_{G}} G, \triangleright\right)$.
In the general example above put:

- $G=\{ \pm 1\} . A=\mathbb{Z}_{3} . g \triangleright a=\operatorname{ga}(\bmod 3)$.
- $G=G L\left(\mathbb{Z}_{p}, n\right)$; i.e. $n \times n$ invertible matrices in \mathbb{Z}_{p}.

Examples of crossed modules

Let G be a group with a left-action \triangleright on an abelian group A, by automorphisms.
Put $\mathcal{G}=\left(A \xrightarrow{a \in A \mapsto 1_{G}} G, \triangleright\right)$.
In the general example above put:

- $G=\{ \pm 1\} . A=\mathbb{Z}_{3} . g \triangleright a=\operatorname{ga}(\bmod 3)$.
- $G=\mathrm{GL}\left(\mathbb{Z}_{p}, n\right)$; i.e. $n \times n$ invertible matrices in \mathbb{Z}_{p}. $A=\left(\mathbb{Z}_{p}\right)^{n}$. Here p is a prime.

Examples of crossed modules

Let G be a group with a left-action \triangleright on an abelian group A, by automorphisms.
Put $\mathcal{G}=\left(A \xrightarrow{a \in A \mapsto 1_{G}} G, \triangleright\right)$.
In the general example above put:

- $G=\{ \pm 1\} . A=\mathbb{Z}_{3} . g \triangleright a=\operatorname{ga}(\bmod 3)$.
- $G=\mathrm{GL}\left(\mathbb{Z}_{p}, n\right)$; i.e. $n \times n$ invertible matrices in \mathbb{Z}_{p}. $A=\left(\mathbb{Z}_{p}\right)^{n}$. Here p is a prime.

Given a group H, put $\mathcal{G}=\left(H \xrightarrow{g \mapsto \operatorname{Ad}_{g}} \operatorname{Aut}(H)\right)$.

Examples of crossed modules

Let G be a group with a left-action \triangleright on an abelian group A, by automorphisms.
Put $\mathcal{G}=\left(A \xrightarrow{a \in A \mapsto 1_{G}} G, \triangleright\right)$.
In the general example above put:

- $G=\{ \pm 1\} . A=\mathbb{Z}_{3} . g \triangleright a=\operatorname{ga}(\bmod 3)$.
- $G=\mathrm{GL}\left(\mathbb{Z}_{p}, n\right)$; i.e. $n \times n$ invertible matrices in \mathbb{Z}_{p}. $A=\left(\mathbb{Z}_{p}\right)^{n}$. Here p is a prime.

Given a group H, put $\mathcal{G}=\left(H \xrightarrow{g \mapsto \operatorname{Ad}_{g}} \operatorname{Aut}(H)\right)$. Here $\operatorname{Ad}_{g}(x)=g \times g^{-1}$.

Examples of crossed modules

Let G be a group with a left-action \triangleright on an abelian group A, by automorphisms.
Put $\mathcal{G}=\left(A \xrightarrow{a \in A \mapsto 1_{G}} G, \triangleright\right)$.
In the general example above put:

- $G=\{ \pm 1\} . A=\mathbb{Z}_{3} . g \triangleright a=\operatorname{ga}(\bmod 3)$.
- $G=\mathrm{GL}\left(\mathbb{Z}_{p}, n\right)$; i.e. $n \times n$ invertible matrices in \mathbb{Z}_{p}. $A=\left(\mathbb{Z}_{p}\right)^{n}$. Here p is a prime.

Given a group H, put $\mathcal{G}=\left(H \xrightarrow{g \mapsto \operatorname{Ad}_{g}} \operatorname{Aut}(H)\right)$. Here $\operatorname{Ad}_{g}(x)=g x g^{-1}$.
$\operatorname{Aut}(H)$ is the automorphism group of H.

2-dimensional holonomy functors

Given $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ we can define "bigons" in \mathcal{G}.

2-dimensional holonomy functors

Given $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ we can define "bigons" in \mathcal{G}.

2-dimensional holonomy functors

Given $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ we can define "bigons" in \mathcal{G}.

These compose horizontally and vertically:

2-dimensional holonomy functors

Given $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ we can define "bigons" in \mathcal{G}.

These compose horizontally and vertically:

2-dimensional holonomy functors

Given $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ we can define "bigons" in \mathcal{G}.

These compose horizontally and vertically:

2-dimensional holonomy functors

Given $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ we can define "bigons" in \mathcal{G}.

These compose horizontally and vertically:

2-dimensional holonomy functors
Horizontal and vertical compositions of bigons in \mathcal{G} are associative, and have units and inverses.
The interchange law is satisfied

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are associative, and have units and inverses.

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

does not depend on the order whereby it is performed.
As a consequence evaluations of more complicated diagrams like:

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

does not depend on the order whereby it is performed.
As a consequence evaluations of more complicated diagrams like:

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

does not depend on the order whereby it is performed. As a consequence evaluations of more complicated diagrams like:

do not depend on the order whereby we apply compositions.

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

does not depend on the order whereby it is performed. As a consequence evaluations of more complicated diagrams like:

do not depend on the order whereby we apply compositions.

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

does not depend on the order whereby it is performed. As a consequence evaluations of more complicated diagrams like:

do not depend on the order whereby we apply compositions.

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

does not depend on the order whereby it is performed. As a consequence evaluations of more complicated diagrams like:

do not depend on the order whereby we apply compositions.
A very general result is in 1702.00868 [math-ph]

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

does not depend on the order whereby it is performed. As a consequence evaluations of more complicated diagrams like:

do not depend on the order whereby we apply compositions.
A very general result is in 1702.00868 [math-ph]
This leads to a notion of non-abelian multiplication along surfaces.

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

does not depend on the order whereby it is performed. As a consequence evaluations of more complicated diagrams like:

do not depend on the order whereby we apply compositions.
A very general result is in 1702.00868 [math-ph]
This leads to a notion of non-abelian multiplication along surfaces.
This notion underpins surface-holonomy in higher gauge theory.

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:
Two maps $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point.

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:
Two maps $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point.
A homotopy $\Sigma:[0,1]^{2} \rightarrow M$, connecting γ and γ^{\prime}. Σ is considered up to homotopy relative to $\partial\left([0,1]^{2}\right)$

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:
Two maps $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point.
A homotopy $\Sigma:[0,1]^{2} \rightarrow M$, connecting γ and γ^{\prime}.
Σ is considered up to homotopy relative to $\partial\left([0,1]^{2}\right)$.

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:
Two maps $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point.
A homotopy $\Sigma:[0,1]^{2} \rightarrow M$, connecting γ and γ^{\prime}.
Σ is considered up to homotopy relative to $\partial\left([0,1]^{2}\right)$.

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:
Two maps $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point.
A homotopy $\Sigma:[0,1]^{2} \rightarrow M$, connecting γ and γ^{\prime}.
Σ is considered up to homotopy relative to $\partial\left([0,1]^{2}\right)$.
Geometric bigons are represented as:

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:
Two maps $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point.
A homotopy $\Sigma:[0,1]^{2} \rightarrow M$, connecting γ and γ^{\prime}.
Σ is considered up to homotopy relative to $\partial\left([0,1]^{2}\right)$.
Geometric bigons are represented as:

Geometric bigons can be concatenated horizontally and vertically.

- Definition Let M be a manifold; G a crossed module

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:
Two maps $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point.
A homotopy $\Sigma:[0,1]^{2} \rightarrow M$, connecting γ and γ^{\prime}.
Σ is considered up to homotopy relative to $\partial\left([0,1]^{2}\right)$.
Geometric bigons are represented as:

Geometric bigons can be concatenated horizontally and vertically.

- Definition _et M be a manifold; \mathcal{G} a crossed module.

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:
Two maps $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point.
A homotopy $\Sigma:[0,1]^{2} \rightarrow M$, connecting γ and γ^{\prime}.
Σ is considered up to homotopy relative to $\partial\left([0,1]^{2}\right)$.
Geometric bigons are represented as:

Geometric bigons can be concatenated horizontally and vertically.

- Definition Let M be a manifold; \mathcal{G} a crossed module.

A 2-dimensional holonomy is a map:

$$
\{\text { Geometric bigons in } M\} \xrightarrow{\mathcal{F}}\{\text { Bigons in } \mathcal{G}\}
$$

Preserving horizontal and vertical compositions.

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:
Two maps $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point.
A homotopy $\Sigma:[0,1]^{2} \rightarrow M$, connecting γ and γ^{\prime}.
Σ is considered up to homotopy relative to $\partial\left([0,1]^{2}\right)$.
Geometric bigons are represented as:

Geometric bigons can be concatenated horizontally and vertically.

- Definition Let M be a manifold; \mathcal{G} a crossed module. A 2-dimensional holonomy is a map:

$$
\{\text { Geometric bigons in } M\} \xrightarrow{\mathcal{F}}\{\text { Bigons in } \mathcal{G}\}
$$

Preserving horizontal and vertical compositions.

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:
Two maps $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point.
A homotopy $\Sigma:[0,1]^{2} \rightarrow M$, connecting γ and γ^{\prime}.
Σ is considered up to homotopy relative to $\partial\left([0,1]^{2}\right)$.
Geometric bigons are represented as:

Geometric bigons can be concatenated horizontally and vertically.

- Definition Let M be a manifold; \mathcal{G} a crossed module. A 2-dimensional holonomy is a map:

$$
\{\text { Geometric bigons in } M\} \xrightarrow{\mathcal{F}}\{\text { Bigons in } \mathcal{G}\}
$$

Preserving horizontal and vertical compositions.

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:
Two maps $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point.
A homotopy $\Sigma:[0,1]^{2} \rightarrow M$, connecting γ and γ^{\prime}.
Σ is considered up to homotopy relative to $\partial\left([0,1]^{2}\right)$.
Geometric bigons are represented as:

Geometric bigons can be concatenated horizontally and vertically.

- Definition Let M be a manifold; \mathcal{G} a crossed module. A 2-dimensional holonomy is a map:

$$
\{\text { Geometric bigons in } M\} \xrightarrow{\mathcal{F}}\{\text { Bigons in } \mathcal{G}\}
$$

Preserving horizontal and vertical compositions.
The underlying \mathcal{G}-2-bundle can be reconstructed from \mathcal{F}.

2D holonomy along Σ

Note: for Lie crossed modules $(\partial: E \rightarrow G, \triangleright)$, 2-dimensional holonomies arise from pairs $A \in \Omega^{1}(M, \mathfrak{g})$ and $B \in \Omega^{2}(M, \mathfrak{e})$,

2D holonomy along Σ

Note: for Lie crossed modules $(\partial: E \rightarrow G, \triangleright)$, 2-dimensional holonomies arise from pairs $A \in \Omega^{1}(M, \mathfrak{g})$ and $B \in \Omega^{2}(M, \mathfrak{e})$, with $\partial(B)=$ Curva $_{A}=d A+\frac{1}{2}[A, A]$.

2D holonomy along Σ

Note: for Lie crossed modules $(\partial: E \rightarrow G, \triangleright)$, 2-dimensional holonomies arise from pairs $A \in \Omega^{1}(M, \mathfrak{g})$ and $B \in \Omega^{2}(M, \mathfrak{e})$,

2D holonomy along Σ

Note: for Lie crossed modules $(\partial: E \rightarrow G, \triangleright), 2$-dimensional holonomies arise from pairs $A \in \Omega^{1}(M, \mathfrak{g})$ and $B \in \Omega^{2}(M, \mathfrak{e})$, with $\partial(B)=$ Curv $_{A}=d A+\frac{1}{2}[A, A]$.

The HGT analogue of Kitaev quantum double model
Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let M be a manifold.

The HGT analogue of Kitaev quantum double model Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.

The HGT analogue of Kitaev quantum double model Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let M be a manifold.

The HGT analogue of Kitaev quantum double model

 Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.Let M be a manifold. Let $L=\left(L^{0}, L^{1}, L^{2}, \ldots\right)$ be a
CW-decomposition of M (some minor "non-wildness" conditions).

The HGT analogue of Kitaev quantum double model

 Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.Let M be a manifold. Let $L=\left(L^{0}, L^{1}, L^{2}, \ldots\right)$ be a
CW-decomposition of M (some minor "non-wildness" conditions). A discrete 2-connection \mathcal{F} is given by an assignment

The HGT analogue of Kitaev quantum double model

 Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.Let M be a manifold. Let $L=\left(L^{0}, L^{1}, L^{2}, \ldots\right)$ be a
CW-decomposition of M (some minor "non-wildness" conditions). A discrete 2-connection \mathcal{F} is given by an assignment $\gamma \in L^{1} \mapsto g_{\gamma} \in G$

The HGT analogue of Kitaev quantum double model

 Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.Let M be a manifold. Let $L=\left(L^{0}, L^{1}, L^{2}, \ldots\right)$ be a
CW-decomposition of M (some minor "non-wildness" conditions). A discrete 2 -connection \mathcal{F} is given by an assignment $\gamma \in L^{1} \mapsto g_{\gamma} \in G$ and $P \in L^{2} \mapsto e_{P} \in E$,

The HGT analogue of Kitaev quantum double model

 Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.Let M be a manifold. Let $L=\left(L^{0}, L^{1}, L^{2}, \ldots\right)$ be a
CW-decomposition of M (some minor "non-wildness" conditions). A discrete 2-connection \mathcal{F} is given by an assignment $\gamma \in L^{1} \mapsto g_{\gamma} \in G$ and $P \in L^{2} \mapsto e_{P} \in E$, satisfying the fake-flatness condition:

The HGT analogue of Kitaev quantum double model

 Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.Let M be a manifold. Let $L=\left(L^{0}, L^{1}, L^{2}, \ldots\right)$ be a
CW-decomposition of M (some minor "non-wildness" conditions). A discrete 2-connection \mathcal{F} is given by an assignment $\gamma \in L^{1} \mapsto g_{\gamma} \in G$ and $P \in L^{2} \mapsto e_{P} \in E$, satisfying the fake-flatness condition:
If we have a configuration like:

The HGT analogue of Kitaev quantum double model

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let M be a manifold. Let $L=\left(L^{0}, L^{1}, L^{2}, \ldots\right)$ be a
CW-decomposition of M (some minor "non-wildness" conditions). A discrete 2-connection \mathcal{F} is given by an assignment $\gamma \in L^{1} \mapsto g_{\gamma} \in G$ and $P \in L^{2} \mapsto e_{P} \in E$, satisfying the fake-flatness condition:
If we have a configuration like:

The HGT analogue of Kitaev quantum double model

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let M be a manifold. Let $L=\left(L^{0}, L^{1}, L^{2}, \ldots\right)$ be a
CW-decomposition of M (some minor "non-wildness" conditions). A discrete 2-connection \mathcal{F} is given by an assignment $\gamma \in L^{1} \mapsto g_{\gamma} \in G$ and $P \in L^{2} \mapsto e_{P} \in E$, satisfying the fake-flatness condition:
If we have a configuration like:

Then: $\partial\left(e_{P}\right)=g_{\gamma_{4}}^{-1} g_{\gamma_{3}} g_{\gamma_{2}} g_{\gamma_{1}}$

The HGT analogue of Kitaev quantum double model

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let M be a manifold. Let $L=\left(L^{0}, L^{1}, L^{2}, \ldots\right)$ be a
CW-decomposition of M (some minor "non-wildness" conditions). A discrete 2-connection \mathcal{F} is given by an assignment $\gamma \in L^{1} \mapsto g_{\gamma} \in G$ and $P \in L^{2} \mapsto e_{P} \in E$, satisfying the fake-flatness condition:
If we have a configuration like:

Then: $\partial\left(e_{P}\right)=g_{\gamma_{4}}^{-1} g_{\gamma_{3}} g_{\gamma_{2}} g_{\gamma_{1}}$.

The Hilbert space for the higher Kitaev model

- M a compact manifold of any dimension. Possibly with ∂.
- Then we put $\Phi(M, L)=\{$ Discrete $2-$ connections $\mathcal{F}\}$

The Hilbert space for the higher Kitaev model

- M a compact manifold of any dimension. Possibly with ∂.
- Then we put $\Phi(M, L)=\{$ Discrete 2 - connections $\mathcal{F}\}$.
- And $V(M, L)=\mathbb{C} \Phi(M, L)$.

The group of gauge operators puts together gauge transformations along vertices and along edges:

The Hilbert space for the higher Kitaev model

- M a compact manifold of any dimension. Possibly with ∂.
- Then we put $\Phi(M, L)=\{$ Discrete 2 - connections $\mathcal{F}\}$.
- And $V(M, L)=\mathbb{C} \Phi(M, L)$.
- The group of gauge operators puts together gauge transformations along vertices and along edges:

The Hilbert space for the higher Kitaev model

- M a compact manifold of any dimension. Possibly with ∂.
- Then we put $\Phi(M, L)=\{$ Discrete 2 - connections $\mathcal{F}\}$.
- And $V(M, L)=\mathbb{C} \Phi(M, L)$.
- The group of gauge operators puts together gauge transformations along vertices and along edges:

The Hilbert space for the higher Kitaev model

- M a compact manifold of any dimension. Possibly with ∂.
- Then we put $\Phi(M, L)=\{$ Discrete 2 - connections $\mathcal{F}\}$.
- And $V(M, L)=\mathbb{C} \Phi(M, L)$.
- The group of gauge operators puts together gauge transformations along vertices and along edges:

$$
T(M, L)=\left(\prod_{v \in L^{0}} G\right) \ltimes\left(\prod_{\sigma(t) \xrightarrow{t} \tau(t) \in L^{1}} E\right)
$$

The Hilbert space for the higher Kitaev model

- M a compact manifold of any dimension. Possibly with ∂.
- Then we put $\Phi(M, L)=\{$ Discrete 2 - connections $\mathcal{F}\}$.
- And $V(M, L)=\mathbb{C} \Phi(M, L)$.
- The group of gauge operators puts together gauge transformations along vertices and along edges:

$$
\begin{aligned}
& T(M, L)=\left(\prod_{v \in L^{0}} G\right) \ltimes\left(\prod_{\sigma(t) \xrightarrow{t} \tau(t) \in L^{1}} E\right) \\
& \quad=\left\{\text { Functions } L^{0} \rightarrow G\right\} \ltimes\left\{\text { Functions } L^{1} \rightarrow E\right\}
\end{aligned}
$$

Where $U \in \prod_{v \in L^{\circ}} G$ left-acts in $\eta \in \prod_{t \in L^{1}} E$ as:

The Hilbert space for the higher Kitaev model

- M a compact manifold of any dimension. Possibly with ∂.
- Then we put $\Phi(M, L)=\{$ Discrete 2 - connections $\mathcal{F}\}$.
- And $V(M, L)=\mathbb{C} \Phi(M, L)$.
- The group of gauge operators puts together gauge transformations along vertices and along edges:

$$
T(M, L)=\left(\prod_{v \in L^{0}} G\right) \ltimes\left(\prod_{\sigma(t) \xrightarrow{t} \tau(t) \in L^{1}} E\right)
$$

$$
=\left\{\text { Functions } L^{0} \rightarrow G\right\} \ltimes\left\{\text { Functions } L^{1} \rightarrow E\right\}
$$

Where $U \in \prod_{v \in L^{0}} G$ left-acts in $\eta \in \prod_{t \in L^{1}} E$ as:
$(U . \eta)(\sigma(t) \xrightarrow{t} \tau(t))=U(\sigma(t)) \triangleright \eta((\sigma(t) \xrightarrow{t} \tau(t)))$

The Hilbert space for the higher Kitaev model

- M a compact manifold of any dimension. Possibly with ∂.
- Then we put $\Phi(M, L)=\{$ Discrete 2 - connections $\mathcal{F}\}$.
- And $V(M, L)=\mathbb{C} \Phi(M, L)$.
- The group of gauge operators puts together gauge transformations along vertices and along edges:

$$
T(M, L)=\left(\prod_{v \in L^{0}} G\right) \ltimes\left(\prod_{\sigma(t) \xrightarrow{t} \tau(t) \in L^{1}} E\right)
$$

$$
=\left\{\text { Functions } L^{0} \rightarrow G\right\} \ltimes\left\{\text { Functions } L^{1} \rightarrow E\right\}
$$

Where $U \in \prod_{v \in L^{0}} G$ left-acts in $\eta \in \prod_{t \in L^{1}} E$ as:

$$
(U . \eta)(\sigma(t) \xrightarrow{t} \tau(t))=U(\sigma(t)) \triangleright \eta((\sigma(t) \xrightarrow{t} \tau(t)))
$$

For S^{1} with one vertex and one edge $T\left(S^{1}, L\right)=G \ltimes E$

The Hilbert space for the higher Kitaev model

- M a compact manifold of any dimension. Possibly with ∂.
- Then we put $\Phi(M, L)=\{$ Discrete 2 - connections $\mathcal{F}\}$.
- And $V(M, L)=\mathbb{C} \Phi(M, L)$.
- The group of gauge operators puts together gauge transformations along vertices and along edges:

$$
T(M, L)=\left(\prod_{v \in L^{0}} G\right) \ltimes\left(\prod_{\sigma(t) \xrightarrow{t} \tau(t) \in L^{1}} E\right)
$$

$$
=\left\{\text { Functions } L^{0} \rightarrow G\right\} \ltimes\left\{\text { Functions } L^{1} \rightarrow E\right\}
$$

Where $U \in \prod_{v \in L^{0}} G$ left-acts in $\eta \in \prod_{t \in L^{1}} E$ as:

$$
(U . \eta)(\sigma(t) \xrightarrow{t} \tau(t))=U(\sigma(t)) \triangleright \eta((\sigma(t) \xrightarrow{t} \tau(t)))
$$

For S^{1} with one vertex and one edge $T\left(S^{1}, L\right)=G \ltimes E$.

Discrete surface holonomy

Theorem: Let $\mathcal{F} \in \Phi(M, L)$ be a discrete 2 -connection.
Given a 2 -sphere Σ cellularly embedded in M, and an initial point $v \in \Sigma$, we can define its 2 -dimensional holonomy:

Discrete surface holonomy

Theorem: Let $\mathcal{F} \in \Phi(M, L)$ be a discrete 2-connection.
Given a 2 -sphere Σ cellularly embedded in M, and an initial point $v \in \Sigma$, we can define its 2-dimensional holonomy: $\operatorname{Hol}_{v}{ }^{2}(\mathcal{F}, \Sigma) \in \operatorname{ker}(\partial) \subset E . \operatorname{arXiv}: 1702.00868$

Discrete surface holonomy

Theorem: Let $\mathcal{F} \in \Phi(M, L)$ be a discrete 2-connection.

- Given a 2 -sphere Σ cellularly embedded in M, and an initial point $v \in \Sigma$, we can define its 2-dimensional holonomy:

Discrete surface holonomy

Theorem: Let $\mathcal{F} \in \Phi(M, L)$ be a discrete 2-connection.

- Given a 2 -sphere Σ cellularly embedded in M, and an initial point $v \in \Sigma$, we can define its 2-dimensional holonomy: $H o l_{v}^{2}(\mathcal{F}, \Sigma) \in \operatorname{ker}(\partial) \subset E . \operatorname{arXiv}: 1702.00868$

Discrete surface holonomy

Theorem: Let $\mathcal{F} \in \Phi(M, L)$ be a discrete 2-connection.

- Given a 2 -sphere Σ cellularly embedded in M, and an initial point $v \in \Sigma$, we can define its 2-dimensional holonomy: $\operatorname{Hol}_{v}^{2}(\mathcal{F}, \Sigma) \in \operatorname{ker}(\partial) \subset E . \operatorname{arXiv}: 1702.00868$
This surface-holonomy depends only on the starting point $v \in \Sigma$, and not in the order whereby we combine 2-cells.
acting by a $g \in G$.

Discrete surface holonomy

Theorem: Let $\mathcal{F} \in \Phi(M, L)$ be a discrete 2-connection.

- Given a 2 -sphere Σ cellularly embedded in M, and an initial point $v \in \Sigma$, we can define its 2 -dimensional holonomy: $\operatorname{Hol}_{v}^{2}(\mathcal{F}, \Sigma) \in \operatorname{ker}(\partial) \subset E . \operatorname{arXiv}: 1702.00868$
This surface-holonomy depends only on the starting point $v \in \Sigma$, and not in the order whereby we combine 2-cells. If we change the base point then 2D holonomy changes by acting by a $g \in G$.

Discrete surface holonomy

Theorem: Let $\mathcal{F} \in \Phi(M, L)$ be a discrete 2-connection.

- Given a 2 -sphere Σ cellularly embedded in M, and an initial point $v \in \Sigma$, we can define its 2-dimensional holonomy: $\operatorname{Hol}_{v}^{2}(\mathcal{F}, \Sigma) \in \operatorname{ker}(\partial) \subset E . \operatorname{arXiv}: 1702.00868$
This surface-holonomy depends only on the starting point $v \in \Sigma$, and not in the order whereby we combine 2-cells. If we change the base point then 2D holonomy changes by acting by a $g \in G$.
For example, consider the discrete 2-connection on the tetrahedron Σ, below, based on the bottom left corner v_{0}.

Discrete surface holonomy

Theorem: Let $\mathcal{F} \in \Phi(M, L)$ be a discrete 2-connection.

- Given a 2 -sphere Σ cellularly embedded in M, and an initial point $v \in \Sigma$, we can define its 2-dimensional holonomy: $\operatorname{Hol}_{v}^{2}(\mathcal{F}, \Sigma) \in \operatorname{ker}(\partial) \subset E . \operatorname{arXiv}: 1702.00868$
This surface-holonomy depends only on the starting point $v \in \Sigma$, and not in the order whereby we combine 2-cells. If we change the base point then 2D holonomy changes by acting by a $g \in G$.
For example, consider the discrete 2-connection on the tetrahedron Σ, below, based on the bottom left corner v_{0}.

Discrete surface holonomy

Theorem: Let $\mathcal{F} \in \Phi(M, L)$ be a discrete 2-connection.

- Given a 2 -sphere Σ cellularly embedded in M, and an initial point $v \in \Sigma$, we can define its 2-dimensional holonomy: $\operatorname{Hol}_{v}^{2}(\mathcal{F}, \Sigma) \in \operatorname{ker}(\partial) \subset E . \operatorname{arXiv}: 1702.00868$
This surface-holonomy depends only on the starting point $v \in \Sigma$, and not in the order whereby we combine 2-cells. If we change the base point then 2D holonomy changes by acting by a $g \in G$.
For example, consider the discrete 2-connection on the tetrahedron Σ, below, based on the bottom left corner v_{0}.

Then $\operatorname{Hol}_{v_{0}}^{2}(\mathcal{F}, \Sigma)=e_{1} e_{2}^{-1} e_{3}^{-1} g_{12} \triangleright e_{4}$.

Action of the group of gauge operators
\rightarrow We have an action of the group of gauge operators $T(M, L)$ on $\Phi(M, L)$, preserving 2D holonomy, up to acting by G.

For edge onerator this action is defined from the 2D holonomy.

Action of the group of gauge operators

- We have an action of the group of gauge operators $T(M, L)$ on $\Phi(M, L)$, preserving 2D holonomy, up to acting by G.

Action of the group of gauge operators

- We have an action of the group of gauge operators $T(M, L)$ on $\Phi(M, L)$, preserving 2D holonomy, up to acting by G.
For edge operator, this action is defined from the 2D holonomy.

Action of the group of gauge operators

- We have an action of the group of gauge operators $T(M, L)$ on $\Phi(M, L)$, preserving 2D holonomy, up to acting by G.
For edge operator, this action is defined from the 2D holonomy. Given $t \in L^{1}$, and $e \in E$, let U_{t}^{e} be the unique gauge operator supported in t with $U_{t}^{e}(t)=e$. (Called an edge gauge spike.)

Action of the group of gauge operators

- We have an action of the group of gauge operators $T(M, L)$ on $\Phi(M, L)$, preserving 2 D holonomy, up to acting by G.
For edge operator, this action is defined from the 2D holonomy. Given $t \in L^{1}$, and $e \in E$, let U_{t}^{e} be the unique gauge operator supported in t with $U_{t}^{e}(t)=e$. (Called an edge gauge spike.) Given $v \in L^{0}$, and $g \in G$, let U_{t}^{e} be the unique gauge operator supported in v with $U_{v}^{g}(v)=g$. (Called a vertex gauge spike.)

Action of the group of gauge operators

- We have an action of the group of gauge operators $T(M, L)$ on $\Phi(M, L)$, preserving 2D holonomy, up to acting by G.
For edge operator, this action is defined from the 2D holonomy. Given $t \in L^{1}$, and $e \in E$, let U_{t}^{e} be the unique gauge operator supported in t with $U_{t}^{e}(t)=e$. (Called an edge gauge spike.) Given $v \in L^{0}$, and $g \in G$, let U_{t}^{e} be the unique gauge operator supported in v with $U_{v}^{g}(v)=g$. (Called a vertex gauge spike.)

Action of the group of gauge operators

Some examples of vertex gauge transformations:

Action of the group of gauge operators

Some examples of vertex gauge transformations:

Action of the group of gauge operators

Some examples of vertex gauge transformations:

Action of the group of gauge operators

Some examples of edge gauge transformations:

Action of the group of gauge operators

Some examples of edge gauge transformations:

Action of the group of gauge operators

Some examples of edge gauge transformations:

$\partial_{\mathcal{G}}\left(\left(g_{5} g_{4}^{-1} g_{3}^{-1} g_{2}^{-1} \triangleright e\right) e_{P}\right)=g_{5} g_{4}^{-1} g_{3}^{-1} g_{2}^{-1} \partial(e) g_{1}$

Action of the group of gauge operators

Some examples of edge gauge transformations:

The higher Kitaev model

$V(M, L)=\mathbb{C}\{$ Discrete $2-$ connections $\mathcal{F}\}$.
Hamiltonian $H: V(M, L) \rightarrow V(M, L)$

The higher Kitaev model
$V(M, L)=\mathbb{C}\{$ Discrete 2 - connections $\mathcal{F}\}$.

The higher Kitaev model

$V(M, L)=\mathbb{C}\{$ Discrete $2-$ connections $\mathcal{F}\}$. Hamiltonian $H: V(M, L) \rightarrow V(M, L)$.

The higher Kitaev model

$V(M, L)=\mathbb{C}\{$ Discrete 2 - connections $\mathcal{F}\}$.
Hamiltonian $H: V(M, L) \rightarrow V(M, L)$.

$$
H=-\frac{1}{|G|} \sum_{v \in L^{\circ}} \sum_{g \in G} \hat{U}_{v}^{g}-\frac{1}{|E|} \sum_{t \in L^{1}} \sum_{e \in E} \hat{U}_{t}^{e}-\sum_{b \in L^{3}} \mathcal{C}_{b}^{1} .
$$

The higher Kitaev model

$V(M, L)=\mathbb{C}\{$ Discrete 2 - connections $\mathcal{F}\}$.
Hamiltonian $H: V(M, L) \rightarrow V(M, L)$.

$$
\begin{gathered}
H=-\frac{1}{|G|} \sum_{v \in L^{0}} \sum_{g \in G} \hat{U}_{v}^{g}-\frac{1}{|E|} \sum_{t \in L^{1}} \sum_{e \in E} \hat{U}_{t}^{e}-\sum_{b \in L^{3}} \mathcal{C}_{b}^{1 E} . \\
H=-\sum_{v \in L^{0}} \mathcal{A}_{v}-\sum_{t \in L^{1}} \mathcal{B}_{t}-\sum_{b \in L^{3}} \mathcal{C}_{b}^{1 E} .
\end{gathered}
$$

The higher Kitaev model

$V(M, L)=\mathbb{C}\{$ Discrete 2 - connections $\mathcal{F}\}$.
Hamiltonian $H: V(M, L) \rightarrow V(M, L)$.

$$
\begin{gathered}
H=-\frac{1}{|G|} \sum_{v \in L^{0}} \sum_{g \in G} \hat{U}_{v}^{g}-\frac{1}{|E|} \sum_{t \in L^{1}} \sum_{e \in E} \hat{U}_{t}^{e}-\sum_{b \in L^{3}} \mathcal{C}_{b}^{1_{E}^{E}} . \\
H=-\sum_{v \in L^{0}} \mathcal{A}_{v}-\sum_{t \in L^{1}} \mathcal{B}_{t}-\sum_{b \in L^{3}} \mathcal{C}_{b}^{1 E} .
\end{gathered}
$$

Where

The higher Kitaev model

$V(M, L)=\mathbb{C}\{$ Discrete $2-$ connections $\mathcal{F}\}$.
Hamiltonian $H: V(M, L) \rightarrow V(M, L)$.

$$
\begin{gathered}
H=-\frac{1}{|G|} \sum_{v \in L^{0}} \sum_{g \in G} \hat{U}_{v}^{g}-\frac{1}{|E|} \sum_{t \in L^{1}} \sum_{e \in E} \hat{U}_{t}^{e}-\sum_{b \in L^{3}} \mathcal{C}_{b}^{1 E} . \\
H=-\sum_{v \in L^{0}} \mathcal{A}_{v}-\sum_{t \in L^{1}} \mathcal{B}_{t}-\sum_{b \in L^{3}} \mathcal{C}_{b}^{1 E} .
\end{gathered}
$$

Where $\mathcal{C}_{b}^{k}(\mathcal{F})=\left\{\begin{array}{l}\mathcal{F}, \text { if } 2 \operatorname{hol}(\mathcal{F}, \partial b)=k \\ 0, \text { otherwise }\end{array}\right.$, where $k \in \operatorname{ker}(\partial)$.
All operator in the last sum are commuting self-adjoint projectors

The higher Kitaev model

$$
V(M, L)=\mathbb{C}\{\text { Discrete } 2 \text { - connections } \mathcal{F}\} .
$$

Hamiltonian $H: V(M, L) \rightarrow V(M, L)$.

$$
\begin{gathered}
H=-\frac{1}{|G|} \sum_{v \in L^{0}} \sum_{g \in G} \hat{U}_{v}^{g}-\frac{1}{|E|} \sum_{t \in L^{1}} \sum_{e \in E} \hat{U}_{t}^{e}-\sum_{b \in L^{3}} \mathcal{C}_{b}^{1 E} . \\
H=-\sum_{v \in L^{0}} \mathcal{A}_{v}-\sum_{t \in L^{1}} \mathcal{B}_{t}-\sum_{b \in L^{3}} \mathcal{C}_{b}^{1 E} .
\end{gathered}
$$

Where $\mathcal{C}_{b}^{k}(\mathcal{F})=\left\{\begin{array}{l}\mathcal{F}, \text { if } 2 h o l(\mathcal{F}, \partial b)=k \\ 0, \text { otherwise }\end{array}\right.$, where $k \in \operatorname{ker}(\partial)$.
All operator in the last sum are commuting self-adjoint projectors.
$\mathcal{C}_{b}^{1 E}$ forces the surface-holonomy of a discrete 2 -connection \mathcal{F} to be trivial along the boundary of the 3 -cell b.

The higher Kitaev model

$V(M, L)=\mathbb{C}\{$ Discrete $2-$ connections $\mathcal{F}\}$.
Hamiltonian $H: V(M, L) \rightarrow V(M, L)$.

$$
\begin{gathered}
H=-\frac{1}{|G|} \sum_{v \in L^{0}} \sum_{g \in G} \hat{U}_{v}^{g}-\frac{1}{|E|} \sum_{t \in L^{1}} \sum_{e \in E} \hat{U}_{t}^{e}-\sum_{b \in L^{3}} \mathcal{C}_{b}^{1 E} . \\
H=-\sum_{v \in L^{0}} \mathcal{A}_{v}-\sum_{t \in L^{1}} \mathcal{B}_{t}-\sum_{b \in L^{3}} \mathcal{C}_{b}^{1 E} .
\end{gathered}
$$

Where $\mathcal{C}_{b}^{k}(\mathcal{F})=\left\{\begin{array}{l}\mathcal{F}, \text { if } 2 h o l(\mathcal{F}, \partial b)=k \\ 0, \text { otherwise }\end{array}\right.$, where $k \in \operatorname{ker}(\partial)$.
All operator in the last sum are commuting self-adjoint projectors.
$\mathcal{C}_{b}^{1 E}$ forces the surface-holonomy of a discrete 2-connection \mathcal{F} to be trivial along the boundary of the 3 -cell b.

The higher Kitaev model

$V(M, L)=\mathbb{C}\{$ Discrete $2-$ connections $\mathcal{F}\}$.
Hamiltonian $H: V(M, L) \rightarrow V(M, L)$.

$$
\begin{gathered}
H=-\frac{1}{|G|} \sum_{v \in L^{0}} \sum_{g \in G} \hat{U}_{v}^{g}-\frac{1}{|E|} \sum_{t \in L^{1}} \sum_{e \in E} \hat{U}_{t}^{e}-\sum_{b \in L^{3}} \mathcal{C}_{b}^{1 E} . \\
H=-\sum_{v \in L^{\circ}} \mathcal{A}_{v}-\sum_{t \in L^{1}} \mathcal{B}_{t}-\sum_{b \in L^{3}} \mathcal{C}_{b}^{1 E} .
\end{gathered}
$$

Where $\mathcal{C}_{b}^{k}(\mathcal{F})=\left\{\begin{array}{l}\mathcal{F}, \text { if } 2 h o l(\mathcal{F}, \partial b)=k \\ 0, \text { otherwise }\end{array}\right.$, where $k \in \operatorname{ker}(\partial)$.
All operator in the last sum are commuting self-adjoint projectors.
$\mathcal{C}_{b}^{1 E}$ forces the surface-holonomy of a discrete 2-connection \mathcal{F} to be trivial along the boundary of the 3 -cell b.

Algebra generated by the U_{t}^{g}, U_{t}^{e} and C_{b}^{k} is our proposal for a local operator algebra. Relations are in arXiv:1702.00868.

Ground state degeneracy of higher Kitaev model

$$
\Phi(M, L)=\{\text { Discrete } 2-\text { connections }\} .
$$

Theorem

Ground state degeneracy of higher Kitaev model

$$
\Phi(M, L)=\{\text { Discrete } 2-\text { connections }\} .
$$

Theorem

$$
\Phi(M, L) \cong \operatorname{hom}\left(\Pi_{2}\left(M^{2}, M^{1}, M^{0}\right), \mathcal{G}\right), \quad \text { canonically }
$$

Where $\Pi_{2}\left(M^{2}, M^{1}, M^{0}\right)$ is the fundamental crossed module of the filtered space $\left(M^{2}, M^{1}, M^{0}\right)$, a crossed module of groupoids.

Ground state degeneracy of higher Kitaev model

$$
\Phi(M, L)=\{\text { Discrete } 2-\text { connections }\} .
$$

Theorem

$$
\Phi(M, L) \cong \operatorname{hom}\left(\Pi_{2}\left(M^{2}, M^{1}, M^{0}\right), \mathcal{G}\right), \quad \text { canonically }
$$

Where $\Pi_{2}\left(M^{2}, M^{1}, M^{0}\right)$ is the fundamental crossed module of the filtered space (M^{2}, M^{1}, M^{0}), a crossed module of groupoids.

Ground state degeneracy of higher Kitaev model

$$
\Phi(M, L)=\{\text { Discrete } 2-\text { connections }\} .
$$

Theorem

$$
\Phi(M, L) \cong \operatorname{hom}\left(\Pi_{2}\left(M^{2}, M^{1}, M^{0}\right), \mathcal{G}\right), \quad \text { canonically }
$$

Where $\Pi_{2}\left(M^{2}, M^{1}, M^{0}\right)$ is the fundamental crossed module of the filtered space $\left(M^{2}, M^{1}, M^{0}\right)$, a crossed module of groupoids.
Theorem The ground state of $H: V(M, L) \rightarrow V(M, L)$ is

Ground state degeneracy of higher Kitaev model

$$
\Phi(M, L)=\{\text { Discrete } 2-\text { connections }\} .
$$

Theorem

$$
\Phi(M, L) \cong \operatorname{hom}\left(\Pi_{2}\left(M^{2}, M^{1}, M^{0}\right), \mathcal{G}\right), \quad \text { canonically }
$$

Where $\Pi_{2}\left(M^{2}, M^{1}, M^{0}\right)$ is the fundamental crossed module of the filtered space (M^{2}, M^{1}, M^{0}), a crossed module of groupoids.
Theorem The ground state of $H: V(M, L) \rightarrow V(M, L)$ is
$G S(M, L)$
$=\left\{\mathcal{F} \in \mathbb{C}\left(\operatorname{hom}\left(\Pi_{2}\left(M, M^{1}, M^{0}\right), \mathcal{G}\right): U . \mathcal{F}=\mathcal{F}, \forall U \in T(M, L)\right\}\right.$.

Hence $G(M, L)=V(L)$ depends only on M and not on L.

Ground state degeneracy of higher Kitaev model

$$
\Phi(M, L)=\{\text { Discrete } 2-\text { connections }\} .
$$

Theorem

$$
\Phi(M, L) \cong \operatorname{hom}\left(\Pi_{2}\left(M^{2}, M^{1}, M^{0}\right), \mathcal{G}\right), \quad \text { canonically }
$$

Where $\Pi_{2}\left(M^{2}, M^{1}, M^{0}\right)$ is the fundamental crossed module of the filtered space (M^{2}, M^{1}, M^{0}), a crossed module of groupoids.
Theorem The ground state of $H: V(M, L) \rightarrow V(M, L)$ is
$G S(M, L)$
$=\left\{\mathcal{F} \in \mathbb{C}\left(\operatorname{hom}\left(\Pi_{2}\left(M, M^{1}, M^{0}\right), \mathcal{G}\right): U . \mathcal{F}=\mathcal{F}, \forall U \in T(M, L)\right\}\right.$.
$\cong \mathbb{C}\left\{\right.$ Maps $\left.M \rightarrow B_{\mathcal{G}}\right\} /$ Homotopy, canonically.

Hence $G(M, L)=V(L)$ depends only on M and not on L.

Here $B_{\mathcal{G}}$ is the classifying space of the crossed module \mathcal{G}.

Ground state degeneracy of higher Kitaev model

$$
\Phi(M, L)=\{\text { Discrete } 2-\text { connections }\} .
$$

Theorem

$$
\Phi(M, L) \cong \operatorname{hom}\left(\Pi_{2}\left(M^{2}, M^{1}, M^{0}\right), \mathcal{G}\right), \quad \text { canonically }
$$

Where $\Pi_{2}\left(M^{2}, M^{1}, M^{0}\right)$ is the fundamental crossed module of the filtered space (M^{2}, M^{1}, M^{0}), a crossed module of groupoids.
Theorem The ground state of $H: V(M, L) \rightarrow V(M, L)$ is
$G S(M, L)$
$=\left\{\mathcal{F} \in \mathbb{C}\left(\operatorname{hom}\left(\Pi_{2}\left(M, M^{1}, M^{0}\right), \mathcal{G}\right): U . \mathcal{F}=\mathcal{F}, \forall U \in T(M, L)\right\}\right.$.
$\cong \mathbb{C}\left\{\right.$ Maps $\left.M \rightarrow B_{\mathcal{G}}\right\} /$ Homotopy, canonically.

Hence $G(M, L)=V(L)$ depends only on M and not on L.
Here $B_{\mathcal{G}}$ is the classifying space of the crossed module \mathcal{G}.

Ground state degeneracy of higher Kitaev model

$$
\Phi(M, L)=\{\text { Discrete } 2-\text { connections }\} .
$$

Theorem

$$
\Phi(M, L) \cong \operatorname{hom}\left(\Pi_{2}\left(M^{2}, M^{1}, M^{0}\right), \mathcal{G}\right), \quad \text { canonically }
$$

Where $\Pi_{2}\left(M^{2}, M^{1}, M^{0}\right)$ is the fundamental crossed module of the filtered space (M^{2}, M^{1}, M^{0}), a crossed module of groupoids.
Theorem The ground state of $H: V(M, L) \rightarrow V(M, L)$ is $G S(M, L)$
$=\left\{\mathcal{F} \in \mathbb{C}\left(\operatorname{hom}\left(\Pi_{2}\left(M, M^{1}, M^{0}\right), \mathcal{G}\right): U . \mathcal{F}=\mathcal{F}, \forall U \in T(M, L)\right\}\right.$.
$\cong \mathbb{C}\left\{\right.$ Maps $\left.M \rightarrow B_{\mathcal{G}}\right\} /$ Homotopy, canonically.

Hence $G(M, L)=V(L)$ depends only on M and not on L.
Here $B_{\mathcal{G}}$ is the classifying space of the crossed module \mathcal{G}.

Classifying space $B_{\mathcal{G}}$ of a crossed module \mathcal{G}
As the geometric realisation of a simplicial set $B_{\mathcal{G}}$ has:

Classifying space $B_{\mathcal{G}}$ of a crossed module \mathcal{G}

As the geometric realisation of a simplicial set $B_{\mathcal{G}}$ has:

Classifying space $B_{\mathcal{G}}$ of a crossed module \mathcal{G}

As the geometric realisation of a simplicial set $B_{\mathcal{G}}$ has:

- one 0 -simplex $\{*\}$
- One 1 -simplex $* \xrightarrow{g} *$ for each $g \in G$.

Classifying space $B_{\mathcal{G}}$ of a crossed module \mathcal{G}

As the geometric realisation of a simplicial set $B_{\mathcal{G}}$ has:

- one 0 -simplex $\{*\}$
- One 1-simplex $* \xrightarrow{g} *$ for each $g \in G$.
- 2-simplices have the form (where $g, h \in G$ and $e \in E$):

Classifying space $B_{\mathcal{G}}$ of a crossed module \mathcal{G}

As the geometric realisation of a simplicial set $B_{\mathcal{G}}$ has:

- one 0 -simplex $\{*\}$
- One 1-simplex $* \xrightarrow{g} *$ for each $g \in G$.
- 2-simplices have the form (where $g, h \in G$ and $e \in E$):

Classifying space $B_{\mathcal{G}}$ of a crossed module \mathcal{G}

As the geometric realisation of a simplicial set $B_{\mathcal{G}}$ has:

- one 0 -simplex $\{*\}$
- One 1-simplex $* \xrightarrow{g} *$ for each $g \in G$.
- 2-simplices have the form (where $g, h \in G$ and $e \in E$):

- 3-simplices have the form

Classifying space $B_{\mathcal{G}}$ of a crossed module \mathcal{G}

As the geometric realisation of a simplicial set $B_{\mathcal{G}}$ has:

- one 0 -simplex $\{*\}$
- One 1-simplex $* \xrightarrow{g} *$ for each $g \in G$.
- 2-simplices have the form (where $g, h \in G$ and $e \in E$):

- 3-simplices have the form

Classifying space $B_{\mathcal{G}}$ of a crossed module \mathcal{G}

As the geometric realisation of a simplicial set $B_{\mathcal{G}}$ has:

- one 0 -simplex $\{*\}$
- One 1-simplex $* \xrightarrow{g} *$ for each $g \in G$.
- 2-simplices have the form (where $g, h \in G$ and $e \in E$):

- 3-simplices have the form

$\partial_{\mathcal{G}}\left(e_{1}\right)=g_{01} g_{13}\left(g_{03}\right)^{-1} \quad \partial_{\mathcal{G}}\left(e_{4}\right)=g_{12} g_{23}\left(g_{13}\right)^{-1} \quad \partial_{\mathcal{G}}\left(e_{2}\right)=g_{02} g_{23}\left(g_{03}\right)^{-1} \quad \partial_{\mathcal{G}}\left(e_{3}\right)=g_{01} g_{12}\left(g_{02}\right)^{-1}$

Classifying space $B_{\mathcal{G}}$ of a crossed module \mathcal{G}

As the geometric realisation of a simplicial set $B_{\mathcal{G}}$ has:

- one 0 -simplex $\{*\}$
- One 1-simplex $* \xrightarrow{g} *$ for each $g \in G$.
- 2-simplices have the form (where $g, h \in G$ and $e \in E$):

- 3-simplices have the form

$\partial_{\mathcal{G}}\left(e_{1}\right)=g_{01} g_{13}\left(g_{03}\right)^{-1} \quad \partial_{\mathcal{G}}\left(e_{4}\right)=g_{12} g_{23}\left(g_{13}\right)^{-1} \quad \partial_{\mathcal{G}}\left(e_{2}\right)=g_{02} g_{23}\left(g_{03}\right)^{-1} \quad \partial_{\mathcal{G}}\left(e_{3}\right)=g_{01} g_{12}\left(g_{02}\right)^{-1}$
- n-simplices are analogously defined. Colourings of 1 and 2-cells of the n-simplex, fake-flat on trianges and flat on tetrahedra,

Underpinning TQFT and invariants of loop braids

There is a $(n+1) D$ TQFT whose state spaces $V(M), M$ an n-manifold, are the ground state of higher Kitaev over M: the Yetter homotopy 2-type TQFT. $1606.06639+1702.00868$

Underpinning TQFT and invariants of loop braids

 There is a $(\mathrm{n}+1) \mathrm{D}$ TQFT whose state spaces $V(M), M$ an n-manifold, are the ground state of higher Kitaev over M:
Underpinning TQFT and invariants of loop braids

 There is a $(\mathrm{n}+1) \mathrm{D}$ TQFT whose state spaces $V(M), M$ an n-manifold, are the ground state of higher Kitaev over M: the Yetter homotopy 2-type TQFT. $1606.06639+1702.00868$> Yetter TQFT computes homotopy cardinality of certain function spaces: math/0608484. Cf. Quinn total homotopy TQFT We stay in the homotopy language so: $V(M)=\mathbb{C}\left\{\right.$ maps $\left.f: M \rightarrow B_{C}\right\} / h o m o t o p y$

Underpinning TQFT and invariants of loop braids

 There is a $(\mathrm{n}+1) \mathrm{D}$ TQFT whose state spaces $V(M), M$ an n-manifold, are the ground state of higher Kitaev over M: the Yetter homotopy 2-type TQFT. $1606.06639+1702.00868$Yetter TQFT computes homotopy cardinality of certain function spaces: math/0608484. Cf. Quinn total homotopy TQFT.

We stay in the homotopy language so:
$V(M)=\mathbb{C}\left\{\right.$ maps $\left.f: M \rightarrow B_{\mathcal{G}}\right\} /$ homotopy.

Underpinning TQFT and invariants of loop braids

 There is a $(\mathrm{n}+1) \mathrm{D}$ TQFT whose state spaces $V(M), M$ an n-manifold, are the ground state of higher Kitaev over M: the Yetter homotopy 2-type TQFT. $1606.06639+1702.00868$Yetter TQFT computes homotopy cardinality of certain function spaces: math/0608484. Cf. Quinn total homotopy TQFT.

We stay in the homotopy language so:

$$
V(M)=\mathbb{C}\left\{\text { maps } f: M \rightarrow B_{\mathcal{G}}\right\} / \text { homotopy } .
$$

Underpinning TQFT and invariants of loop braids

 There is a $(\mathrm{n}+1) \mathrm{D}$ TQFT whose state spaces $V(M), M$ an n-manifold, are the ground state of higher Kitaev over M: the Yetter homotopy 2-type TQFT. $1606.06639+1702.00868$Yetter TQFT computes homotopy cardinality of certain function spaces: math/0608484. Cf. Quinn total homotopy TQFT.

We stay in the homotopy language so:

$$
V(M)=\mathbb{C}\left\{\text { maps } f: M \rightarrow B_{\mathcal{G}}\right\} / \text { homotopy } .
$$

For a cobordism $M \xrightarrow{W} M^{\prime}$, we have map $V(M) \xrightarrow{\Phi_{W}} V\left(M^{\prime}\right)$.

Underpinning TQFT and invariants of loop braids

 There is a $(\mathrm{n}+1) \mathrm{D}$ TQFT whose state spaces $V(M), M$ an n-manifold, are the ground state of higher Kitaev over M : the Yetter homotopy 2-type TQFT. $1606.06639+1702.00868$Yetter TQFT computes homotopy cardinality of certain function spaces: math/0608484. Cf. Quinn total homotopy TQFT.

We stay in the homotopy language so:

$$
V(M)=\mathbb{C}\left\{\text { maps } f: M \rightarrow B_{\mathcal{G}}\right\} / \text { homotopy } .
$$

For a cobordism $M \xrightarrow{W} M^{\prime}$, we have map $V(M) \xrightarrow{\Phi_{W}} V\left(M^{\prime}\right)$. $\left\langle\left[f: M \rightarrow B_{\mathcal{G}}\right]\right| \Phi_{W}\left|\left[f^{\prime}: M \rightarrow B_{\mathcal{G}}\right]\right\rangle$

Underpinning TQFT and invariants of loop braids

 There is a ($\mathrm{n}+1$)D TQFT whose state spaces $V(M), M$ an n-manifold, are the ground state of higher Kitaev over M : the Yetter homotopy 2-type TQFT. $1606.06639+1702.00868$Yetter TQFT computes homotopy cardinality of certain function spaces: math/0608484. Cf. Quinn total homotopy TQFT.

We stay in the homotopy language so:

$$
V(M)=\mathbb{C}\left\{\text { maps } f: M \rightarrow B_{\mathcal{G}}\right\} / \text { homotopy } .
$$

For a cobordism $M \xrightarrow{W} M^{\prime}$, we have map $V(M) \xrightarrow{\Phi_{W}} V\left(M^{\prime}\right)$. $\left\langle\left[f: M \rightarrow B_{\mathcal{G}}\right]\right| \Phi_{W}\left|\left[f^{\prime}: M \rightarrow B_{\mathcal{G}}\right]\right\rangle$

$$
=
$$

Underpinning TQFT and invariants of loop braids

 There is a ($\mathrm{n}+1$)D TQFT whose state spaces $V(M), M$ an n-manifold, are the ground state of higher Kitaev over M : the Yetter homotopy 2-type TQFT. $1606.06639+1702.00868$Yetter TQFT computes homotopy cardinality of certain function spaces: math/0608484. Cf. Quinn total homotopy TQFT.

We stay in the homotopy language so:

$$
V(M)=\mathbb{C}\left\{\text { maps } f: M \rightarrow B_{\mathcal{G}}\right\} / \text { homotopy } .
$$

For a cobordism $M \xrightarrow{W} M^{\prime}$, we have map $V(M) \xrightarrow{\Phi_{w}} V\left(M^{\prime}\right)$. $\left\langle\left[f: M \rightarrow B_{\mathcal{G}}\right]\right| \Phi_{W}\left|\left[f^{\prime}: M \rightarrow B_{\mathcal{G}}\right]\right\rangle$

$$
=|[f]|^{1 / 2}
$$

Underpinning TQFT and invariants of loop braids

 There is a ($\mathrm{n}+1$)D TQFT whose state spaces $V(M), M$ an n-manifold, are the ground state of higher Kitaev over M : the Yetter homotopy 2-type TQFT. $1606.06639+1702.00868$Yetter TQFT computes homotopy cardinality of certain function spaces: math/0608484. Cf. Quinn total homotopy TQFT.

We stay in the homotopy language so:

$$
V(M)=\mathbb{C}\left\{\text { maps } f: M \rightarrow B_{\mathcal{G}}\right\} / \text { homotopy } .
$$

For a cobordism $M \xrightarrow{W} M^{\prime}$, we have map $V(M) \xrightarrow{\Phi_{w}} V\left(M^{\prime}\right)$. $\left\langle\left[f: M \rightarrow B_{\mathcal{G}}\right]\right| \Phi_{W}\left|\left[f^{\prime}: M \rightarrow B_{\mathcal{G}}\right]\right\rangle$

$$
=|[f]|^{1 / 2}\left|\left[f^{\prime}\right]\right|^{1 / 2}
$$

Underpinning TQFT and invariants of loop braids

 There is a $(\mathrm{n}+1) \mathrm{D}$ TQFT whose state spaces $V(M), M$ an n-manifold, are the ground state of higher Kitaev over M : the Yetter homotopy 2-type TQFT. $1606.06639+1702.00868$Yetter TQFT computes homotopy cardinality of certain function spaces: math/0608484. Cf. Quinn total homotopy TQFT.

We stay in the homotopy language so:

$$
V(M)=\mathbb{C}\left\{\text { maps } f: M \rightarrow B_{\mathcal{G}}\right\} / \text { homotopy } .
$$

For a cobordism $M \xrightarrow{W} M^{\prime}$, we have map $V(M) \xrightarrow{\Phi_{w}} V\left(M^{\prime}\right)$. $\left\langle\left[f: M \rightarrow B_{\mathcal{G}}\right]\right| \Phi_{W}\left|\left[f^{\prime}: M \rightarrow B_{\mathcal{G}}\right]\right\rangle$

$$
=|[f]|^{1 / 2}\left|\left[f^{\prime}\right]\right|^{1 / 2} \mid\left\{H: W \rightarrow B_{\mathcal{G}}: H_{\mid M}=f \text { and } H_{\mid M^{\prime}}=f^{\prime}\right\} \mid
$$

Where $|X|$ denotes homotopy cardinality of the space X.

Underpinning TQFT and invariants of loop braids

 There is a $(\mathrm{n}+1) \mathrm{D}$ TQFT whose state spaces $V(M), M$ an n-manifold, are the ground state of higher Kitaev over M: the Yetter homotopy 2-type TQFT. $1606.06639+1702.00868$Yetter TQFT computes homotopy cardinality of certain function spaces: math/0608484. Cf. Quinn total homotopy TQFT.

We stay in the homotopy language so:

$$
V(M)=\mathbb{C}\left\{\text { maps } f: M \rightarrow B_{\mathcal{G}}\right\} / \text { homotopy } .
$$

For a cobordism $M \xrightarrow{W} M^{\prime}$, we have map $V(M) \xrightarrow{\Phi_{w}} V\left(M^{\prime}\right)$. $\left\langle\left[f: M \rightarrow B_{\mathcal{G}}\right]\right| \Phi_{W}\left|\left[f^{\prime}: M \rightarrow B_{\mathcal{G}}\right]\right\rangle$

$$
=|[f]|^{1 / 2}\left|\left[f^{\prime}\right]\right|^{1 / 2} \mid\left\{H: W \rightarrow B_{\mathcal{G}}: H_{\mid M}=f \text { and } H_{\mid M^{\prime}}=f^{\prime}\right\} \mid
$$

Where $|X|$ denotes homotopy cardinality of the space X.

Underpinning TQFT and invariants of loop braids

There is a $(\mathrm{n}+1) \mathrm{D}$ TQFT whose state spaces $V(M), M$ an n-manifold, are the ground state of higher Kitaev over M : the Yetter homotopy 2-type TQFT. $1606.06639+1702.00868$

Yetter TQFT computes homotopy cardinality of certain function spaces: math/0608484. Cf. Quinn total homotopy TQFT.

We stay in the homotopy language so:

$$
V(M)=\mathbb{C}\left\{\text { maps } f: M \rightarrow B_{\mathcal{G}}\right\} / \text { homotopy } .
$$

For a cobordism $M \xrightarrow{W} M^{\prime}$, we have map $V(M) \xrightarrow{\Phi_{W}} V\left(M^{\prime}\right)$. $\left\langle\left[f: M \rightarrow B_{\mathcal{G}}\right]\right| \Phi_{W}\left|\left[f^{\prime}: M \rightarrow B_{\mathcal{G}}\right]\right\rangle$

$$
=|[f]|^{1 / 2}\left|\left[f^{\prime}\right]\right|^{1 / 2} \mid\left\{H: W \rightarrow B_{\mathcal{G}}: H_{\mid M}=f \text { and } H_{\mid M^{\prime}}=f^{\prime}\right\} \mid
$$

Where $|X|$ denotes homotopy cardinality of the space X.

$$
|X|=\sum_{x \in \pi_{0}(X)} \frac{\left|\pi_{2}(X, x)\right|\left|\pi_{4}(X, x)\right|\left|\pi_{6}(X, x)\right| \ldots}{\left|\pi_{1}(X, x)\right|\left|\pi_{3}(X, x)\right|\left|\pi_{5}(X, x)\right| \ldots}
$$

Invariants of 2-tangles in the 4-disk D^{4}

Yetter TQFT yields invariants of 2-tangles $\left(C \xrightarrow{T} C^{\prime}\right) \subset D^{4}$.

Invariants of 2-tangles in the 4-disk D^{4}

Yetter TQFT yields invariants of 2-tangles $\left(C \xrightarrow{T} C^{\prime}\right) \subset D^{4}$.

Invariants of 2-tangles in the 4-disk D^{4}

Yetter TQFT yields invariants of 2-tangles $\left(C \xrightarrow{T} C^{\prime}\right) \subset D^{4}$. C a link in $D^{3} \times\{0\}$.

Invariants of 2-tangles in the 4-disk D^{4}

Yetter TQFT yields invariants of 2-tangles $\left(C \xrightarrow{T} C^{\prime}\right) \subset D^{4}$. C a link in $D^{3} \times\{0\} . C^{\prime}$ a link in $D^{3} \times\{1\}$.

Invariants of 2-tangles in the 4-disk D^{4}

Yetter TQFT yields invariants of 2-tangles $\left(C \xrightarrow{T} C^{\prime}\right) \subset D^{4}$. C a link in $D^{3} \times\{0\} . C^{\prime}$ a link in $D^{3} \times\{1\}$.
And $T \subset D^{4}=[0,1]^{4}$ a surface connecting C and C^{\prime}.

Invariants of 2-tangles in the 4-disk D^{4}
Yetter TQFT yields invariants of 2 -tangles $\left(C \xrightarrow{T} C^{\prime}\right) \subset D^{4}$. C a link in $D^{3} \times\{0\} . C^{\prime}$ a link in $D^{3} \times\{1\}$. And $T \subset D^{4}=[0,1]^{4}$ a surface connecting C and C^{\prime}.

Diagrams as the one above generate the loop braid group $L B G_{2}$. Given a 2-tangle $T: C \rightarrow C^{\prime}$ we can consider its complement

Invariants of 2-tangles in the 4-disk D^{4}
Yetter TQFT yields invariants of 2 -tangles $\left(C \xrightarrow{T} C^{\prime}\right) \subset D^{4}$. C a link in $D^{3} \times\{0\} . C^{\prime}$ a link in $D^{3} \times\{1\}$. And $T \subset D^{4}=[0,1]^{4}$ a surface connecting C and C^{\prime}.

Diagrams as the one above generate the loop braid group $L B G_{2}$.
Given a 2-tangle $T: C \rightarrow C^{\prime}$ we can consider its complement.

Invariants of 2-tangles in the 4-disk D^{4}
Yetter TQFT yields invariants of 2-tangles $\left(C \xrightarrow{T} C^{\prime}\right) \subset D^{4}$. C a link in $D^{3} \times\{0\} . C^{\prime}$ a link in $D^{3} \times\{1\}$. And $T \subset D^{4}=[0,1]^{4}$ a surface connecting C and C^{\prime}.

Diagrams as the one above generate the loop braid group $L B G_{2}$. Given a 2-tangle $T: C \rightarrow C^{\prime}$ we can consider its complement.

Invariants of 2-tangles in the 4-disk D^{4}
Yetter TQFT yields invariants of 2-tangles $\left(C \xrightarrow{T} C^{\prime}\right) \subset D^{4}$.
C a link in $D^{3} \times\{0\} . C^{\prime}$ a link in $D^{3} \times\{1\}$.
And $T \subset D^{4}=[0,1]^{4}$ a surface connecting C and C^{\prime}.

Diagrams as the one above generate the loop braid group $L B G_{2}$.
Given a 2-tangle $T: C \rightarrow C^{\prime}$ we can consider its complement. This yields a "pointed cobordism" of manifolds $W_{T}: M_{C} \rightarrow M_{C^{\prime}}$.

Invariants of 2-tangles in the 4-disk D^{4}
Yetter TQFT yields invariants of 2-tangles $\left(C \xrightarrow{T} C^{\prime}\right) \subset D^{4}$.
C a link in $D^{3} \times\{0\} . C^{\prime}$ a link in $D^{3} \times\{1\}$.
And $T \subset D^{4}=[0,1]^{4}$ a surface connecting C and C^{\prime}.

Diagrams as the one above generate the loop braid group $L B G_{2}$. Given a 2-tangle $T: C \rightarrow C^{\prime}$ we can consider its complement. This yields a "pointed cobordism" of manifolds $W_{T}: M_{C} \rightarrow M_{C^{\prime}}$. Here

Invariants of 2-tangles in the 4-disk D^{4}
Yetter TQFT yields invariants of 2-tangles $\left(C \xrightarrow{T} C^{\prime}\right) \subset D^{4}$.
C a link in $D^{3} \times\{0\} . C^{\prime}$ a link in $D^{3} \times\{1\}$.
And $T \subset D^{4}=[0,1]^{4}$ a surface connecting C and C^{\prime}.

Diagrams as the one above generate the loop braid group $L B G_{2}$. Given a 2-tangle $T: C \rightarrow C^{\prime}$ we can consider its complement. This yields a "pointed cobordism" of manifolds $W_{T}: M_{C} \rightarrow M_{C^{\prime}}$. Here $M_{C}=\left(D^{3} \backslash C, *\right)$,

Invariants of 2-tangles in the 4-disk D^{4}
Yetter TQFT yields invariants of 2-tangles $\left(C \xrightarrow{T} C^{\prime}\right) \subset D^{4}$.
C a link in $D^{3} \times\{0\} . C^{\prime}$ a link in $D^{3} \times\{1\}$.
And $T \subset D^{4}=[0,1]^{4}$ a surface connecting C and C^{\prime}.

Diagrams as the one above generate the loop braid group $L B G_{2}$. Given a 2-tangle $T: C \rightarrow C^{\prime}$ we can consider its complement. This yields a "pointed cobordism" of manifolds $W_{T}: M_{C} \rightarrow M_{C^{\prime}}$. Here $M_{C}=\left(D^{3} \backslash C, *\right), M_{C^{\prime}}=\left(D^{3} \backslash C, *\right)^{\prime}$,

Invariants of 2-tangles in the 4-disk D^{4}
Yetter TQFT yields invariants of 2-tangles $\left(C \xrightarrow{T} C^{\prime}\right) \subset D^{4}$.
C a link in $D^{3} \times\{0\} . C^{\prime}$ a link in $D^{3} \times\{1\}$.
And $T \subset D^{4}=[0,1]^{4}$ a surface connecting C and C^{\prime}.

Diagrams as the one above generate the loop braid group $L B G_{2}$. Given a 2-tangle $T: C \rightarrow C^{\prime}$ we can consider its complement. This yields a "pointed cobordism" of manifolds $W_{T}: M_{C} \rightarrow M_{C^{\prime}}$. Here $M_{C}=\left(D^{3} \backslash C, *\right), M_{C^{\prime}}=\left(D^{3} \backslash C, *\right)^{\prime}, W_{T}=\left(D^{4} \backslash T, * \times I\right)$.

The tube map: $\{$ Welded knots $\} \rightarrow\{$ Loop braids $\}$
Yetter / Quinn TQFT on complements loop braids (c.f.
arXiv:0704.1246).
Via the tube map. $\{$ Welded braids\} \rightarrow \{Loop Braids $\}$

The tube map: $\{$ Welded knots $\} \rightarrow\{$ Loop braids $\}$
Yetter / Quinn TQFT on complements loop braids (c.f. arXiv:0704.1246).

The tube map: $\{$ Welded knots $\} \rightarrow\{$ Loop braids $\}$

Yetter / Quinn TQFT on complements loop braids (c.f. arXiv:0704.1246).
Via the tube map. $\{$ Welded braids $\} \rightarrow\{$ Loop Braids $\}$.
A welded braid.

The tube map: $\{$ Welded knots $\} \rightarrow\{$ Loop braids $\}$
Yetter / Quinn TQFT on complements loop braids (c.f. arXiv:0704.1246).
Via the tube map. $\{$ Welded braids $\} \rightarrow\{$ Loop Braids $\}$.

A welded braid.
(Diagrams are to be considered up to
welded Reidemeister moves.)

The tube map: $\{$ Welded knots $\} \rightarrow\{$ Loop braids $\}$

Yetter / Quinn TQFT on complements loop braids (c.f. arXiv:0704.1246).
Via the tube map. $\{$ Welded braids $\} \rightarrow\{$ Loop Braids $\}$.

A welded braid.
(Diagrams are to be considered up to welded Reidemeister moves.)

The tube map: $\{$ Welded knots $\} \rightarrow\{$ Loop braids $\}$
Yetter / Quinn TQFT on complements loop braids (c.f. arXiv:0704.1246).
Via the tube map. \{Welded braids $\} \rightarrow\{$ Loop Braids $\}$.

The tube map in the vicinity of a classical and of a virtual crossing.

Crossed module representations of loop braids

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module. We have a

representation of the loop braid group $W B G_{n}$ on $\mathbb{C}(G \times \operatorname{ker} \partial)^{n}$.

Crossed module representations of loop braids
Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module. We have a
representation of the loop braid group $W B G_{n}$ on $\mathbb{C}(G \times \text { ker } \partial)^{n}$.
It can be calculated by the following biquandle.

Crossed module representations of loop braids

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module. We have a representation of the loop braid group $W B G_{n}$ on $\mathbb{C}(G \times \operatorname{ker} \partial)^{n}$.

Crossed module representations of loop braids

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module. We have a representation of the loop braid group $W B G_{n}$ on $\mathbb{C}(G \times \operatorname{ker} \partial)^{n}$. It can be calculated by the following biquandle.

The extension to representations of the necklace braid group is quite do able (Thourh it has not hean written down)

Crossed module representations of loop braids

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module. We have a representation of the loop braid group $W B G_{n}$ on $\mathbb{C}(G \times \operatorname{ker} \partial)^{n}$. It can be calculated by the following biquandle.

The extension to representations of the necklace braid group is quite do-able. (Though it has not been written down.) And one can also consider homology twistings via cocyles

Crossed module representations of loop braids

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module. We have a representation of the loop braid group $W B G_{n}$ on $\mathbb{C}(G \times \operatorname{ker} \partial)^{n}$. It can be calculated by the following biquandle.

The extension to representations of the necklace braid group is quite do-able. (Though it has not been written down.)
And given the algebraic topological interpretation as maps to $B_{\mathcal{G}}$

Crossed module representations of loop braids

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module. We have a representation of the loop braid group $W B G_{n}$ on $\mathbb{C}(G \times \operatorname{ker} \partial)^{n}$. It can be calculated by the following biquandle.

The extension to representations of the necklace braid group is quite do-able. (Though it has not been written down.) And given the algebraic topological interpretation as maps to $B_{\mathcal{G}}$ one can also consider homology twistings via cocyles $\omega \in H^{4}\left(B_{\mathcal{G}}, U(1)\right)$.

Crossed module representations of loop braids

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module. We have a representation of the loop braid group $W B G_{n}$ on $\mathbb{C}(G \times \operatorname{ker} \partial)^{n}$. It can be calculated by the following biquandle.

The extension to representations of the necklace braid group is quite do-able. (Though it has not been written down.) And given the algebraic topological interpretation as maps to $B_{\mathcal{G}}$ one can also consider homology twistings via cocyles $\omega \in H^{4}\left(B_{\mathcal{G}}, U(1)\right)$. Done for closed manifolds only. math/0608484

Crossed module representations of loop braids

$X, Y \in G, e, f \in \operatorname{ker}(\partial)$.

Enrichments via operator algebras arXiv:1807.09551

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let Γ be the action groupoid of the conjugation action of

Enrichments via operator algebras arXiv:1807.09551

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.

Enrichments via operator algebras arXiv:1807.09551

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let Γ be the action groupoid of the conjugation action of
$G \ltimes \operatorname{ker}(\partial)$ on itself.
Arrows of Γ have the form:

Enrichments via operator algebras arXiv:1807.09551

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let Γ be the action groupoid of the conjugation action of $G \ltimes \operatorname{ker}(\partial)$ on itself.

Enrichments via operator algebras arXiv:1807.09551

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let Γ be the action groupoid of the conjugation action of $G \ltimes \operatorname{ker}(\partial)$ on itself.
Arrows of Γ have the form:

Consider the groupoid algebra $\mathbb{C}(\Gamma)$ of Γ

Enrichments via operator algebras arXiv:1807.09551

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let Γ be the action groupoid of the conjugation action of $G \ltimes \operatorname{ker}(\partial)$ on itself.
Arrows of Γ have the form:

$$
(x, a) \xrightarrow{(y, b)}(y, b) \triangleright(x, a)=\left(y x y^{-1}, b+y \triangleright a-\left(y x y^{-1}\right) \triangleright b\right) .
$$

Consider the groupoid algebra $\mathbb{C}(\Gamma)$ of Γ.

Enrichments via operator algebras arXiv:1807.09551

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let Γ be the action groupoid of the conjugation action of $G \ltimes \operatorname{ker}(\partial)$ on itself.
Arrows of Γ have the form:

$$
(x, a) \xrightarrow{(y, b)}(y, b) \triangleright(x, a)=\left(y x y^{-1}, b+y \triangleright a-\left(y x y^{-1}\right) \triangleright b\right) .
$$

Consider the groupoid algebra $\mathbb{C}(\Gamma)$ of Γ.

This algebra is isomorphic to the underlying algebra of the quantum double of the group-algebra of $G \ltimes \operatorname{ker}(\partial)$.

Enrichments via operator algebras arXiv:1807.09551

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let Γ be the action groupoid of the conjugation action of $G \ltimes \operatorname{ker}(\partial)$ on itself.
Arrows of Γ have the form:

$$
(x, a) \xrightarrow{(y, b)}(y, b) \triangleright(x, a)=\left(y x y^{-1}, b+y \triangleright a-\left(y x y^{-1}\right) \triangleright b\right) .
$$

Consider the groupoid algebra $\mathbb{C}(\Gamma)$ of Γ.
This algebra is isomorphic to the underlying algebra of the quantum double of the group-algebra of $G \ltimes \operatorname{ker}(\partial)$.

Enrichments via operator algebras arXiv:1807.09551 Theorem Given any unitary representation V of $\mathbb{C}(\Gamma)$, we have a unitary representation of the loop braid group on $V \otimes \cdots \otimes V$. It is calculated from the following bikoid

Enrichments via operator algebras arXiv:1807.09551

Theorem Given any unitary representation V of $\mathbb{C}(\Gamma)$, we have a unitary representation of the loop braid group on $V \otimes \cdots \otimes V$.

Enrichments via operator algebras arXiv:1807.09551

Theorem Given any unitary representation V of $\mathbb{C}(\Gamma)$, we have a unitary representation of the loop braid group on $V \otimes \cdots \otimes V$. It is calculated from the following bikoid.

Enrichments via operator algebras arXiv:1807.09551

Theorem Given any unitary representation V of $\mathbb{C}(\Gamma)$, we have a unitary representation of the loop braid group on $V \otimes \cdots \otimes V$. It is calculated from the following bikoid.

$$
((z, a),(w, b)) \stackrel{X_{g r^{*}}}{\stackrel{X^{+}}{\longmapsto}}\left(w, a+b-w^{-1} \triangleright a\right)
$$

Enrichments via operator algebras arXiv:1807.09551

Theorem Given any unitary representation V of $\mathbb{C}(\Gamma)$, we have a unitary representation of the loop braid group on $V \otimes \cdots \otimes V$. It is calculated from the following bikoid.

$$
\begin{aligned}
& ((z, a),(w, b)) \stackrel{(z, a)}{\substack{X_{g r *}^{+}}} \\
& \left(w, a+b-w^{-1} \triangleright a\right) \\
& \bar{w}=\left(w^{-1}, 0_{\operatorname{ker}(\partial)}\right) \\
& -\bar{w} \triangleright a=\left(w_{G},-w^{-1} z w, w^{-1} \triangleright a\right) \in G \ltimes \operatorname{ker}(\partial)
\end{aligned}
$$

\bar{W} and $-\bar{W} \triangleright$ a are interpreted as the 2D holonomies of the tubes
traced by each loop when they move. Aharonov-Bohm phases?

Enrichments via operator algebras arXiv:1807.09551

Theorem Given any unitary representation V of $\mathbb{C}(\Gamma)$, we have a unitary representation of the loop braid group on $V \otimes \cdots \otimes V$. It is calculated from the following bikoid.

$$
\begin{aligned}
& ((z, a),(w, b)) \stackrel{x_{g r *}}{\stackrel{X^{+}}{\longmapsto}}\left(w, a+b-w^{-1} \triangleright a\right) \\
& \bar{w}=\left(w^{-1}, 0_{\operatorname{ker}(\partial)}\right) \quad-\bar{w} \triangleright a=\left(1_{G},-w^{-1} \triangleright a\right) \in G \ltimes \operatorname{ker}(\partial) \\
& \bar{w} \text { and }-\bar{w} \triangleright a \text { are interpreted as the 2D holonomies of the tubes } \\
& \text { traced by each loop when they move. Aharonov-Bohm phases? }
\end{aligned}
$$

Enrichments via operator algebras arXiv:1807.09551

Theorem Given any unitary representation V of $\mathbb{C}(\Gamma)$, we have a unitary representation of the loop braid group on $V \otimes \cdots \otimes V$. It is calculated from the following bikoid.

$$
\begin{aligned}
& ((z, a),(w, b)) \stackrel{x_{g r *}}{\substack{+}}\left(w, a+b-w^{-1} \triangleright a\right) \\
& \bar{w}=\left(w^{-1}, 0_{\operatorname{ker}(\partial)}\right) \quad-\bar{w} \triangleright a=\left(1_{G},-w^{-1} \triangleright a\right) \in G \ltimes \operatorname{ker}(\partial) \\
& \bar{w} \text { and }-\bar{w} \triangleright a \text { are interpreted as the 2D holonomies of the tubes } \\
& \text { traced by each loop when they move. Aharonov-Bohm phases? }
\end{aligned}
$$

Enrichments via operator algebras arXiv:1807.09551

Theorem Given any unitary representation V of $\mathbb{C}(\Gamma)$, we have a unitary representation of the loop braid group on $V \otimes \cdots \otimes V$. It is calculated from the following bikoid.

$$
\begin{aligned}
& ((z, a),(w, b)) \stackrel{X_{g r *}^{+}}{\stackrel{X^{*}}{+}}\left(w, a+b-w^{-1} \triangleright a\right) \\
& \bar{w}=\left(w^{-1}, 0_{\operatorname{ker}(\partial)}\right) \quad\left(w^{-1} z w, w^{-1} \triangleright a\right) \\
& \bar{w} \text { and }-\bar{w} \triangleright a \text { are interpreted as the 2D holonomies of the tubes } \\
& \text { traced by each loop when they move. Aharonov-Bohm phases? }
\end{aligned}
$$

$$
\begin{gathered}
{ }^{\prime} R-\text { matrix }^{\prime} \mathbb{C}(\Gamma) \otimes \mathbb{C}(\Gamma) \ni \mathcal{R}=\sum_{(z, a),(w, b) \in G \ltimes \operatorname{ker}(\partial)} \\
\left((z , a) \xrightarrow { \overline { w } } (w ^ { - 1 } z w , w ^ { - 1 } \triangleright a) \otimes \left((w, b) \xrightarrow{-\bar{w} \triangleright a}\left(w, a+b-w^{-1} \triangleright a\right)\right.\right.
\end{gathered}
$$

Enrichments via operator algebras arXiv:1807.09551

Theorem Given any unitary representation V of $\mathbb{C}(\Gamma)$, we have a unitary representation of the loop braid group on $V \otimes \cdots \otimes V$. It is calculated from the following bikoid.

$$
\begin{aligned}
& ((z, a),(w, b)) \stackrel{X_{g r *}^{+}}{\stackrel{r^{*}}{+}}\left(w, a+b-w^{-1} \triangleright a\right) \\
& \bar{w}=\left(w^{-1}, 0_{\text {ker }(\partial)}\right) \quad\left(w^{-1} z w, w^{-1} \triangleright a\right) \\
& \bar{w} \text { and }-\bar{w} \triangleright a \text { are interpreted as the 2D holonomies of the tubes } \\
& \text { traced by each loop when they move. Aharonov-Bohm phases? }
\end{aligned}
$$

$$
\begin{gathered}
{ }^{\prime} R-\text { matrix }^{\prime} \mathbb{C}(\Gamma) \otimes \mathbb{C}(\Gamma) \ni \mathcal{R}=\sum_{(z, a),(w, b) \in G \ltimes \operatorname{ker}(\partial)} \\
\left((z , a) \xrightarrow { \overline { w } } (w ^ { - 1 } z w , w ^ { - 1 } \triangleright a) \otimes \left((w, b) \xrightarrow{-\bar{w} \triangleright a}\left(w, a+b-w^{-1} \triangleright a\right)\right.\right.
\end{gathered}
$$

\mathcal{R} satisfies:

Enrichments via operator algebras arXiv:1807.09551

Theorem Given any unitary representation V of $\mathbb{C}(\Gamma)$, we have a unitary representation of the loop braid group on $V \otimes \cdots \otimes V$. It is calculated from the following bikoid.

$$
\begin{aligned}
& ((z, a),(w, b)) \stackrel{X_{g r *}}{\longmapsto} \\
& \bar{w}=\left(w^{-1}, 0_{\operatorname{ker}(\partial)}\right) \quad-\bar{w} \triangleright a=\left(1_{G},-w^{-1} \triangleright a\right) \in G \ltimes \operatorname{ker}(\partial) \\
& \bar{w} \text { and }-\bar{w} \triangleright a \text { are interpreted as the 2D holonomies of the tubes } \\
& \text { traced by each loop when they move. Aharonov-Bohm phases? }
\end{aligned}
$$

$$
\begin{aligned}
& \quad{ }^{\prime} R-\text { matrix }^{\prime} \mathbb{C}(\Gamma) \otimes \mathbb{C}(\Gamma) \ni \mathcal{R}=\sum_{(z, a),(w, b) \in G \ltimes \operatorname{ker}(\partial)} \\
& \left((z , a) \xrightarrow { \overline { w } } (w ^ { - 1 } z w , w ^ { - 1 } \triangleright a) \otimes \left((w, b) \xrightarrow{-\bar{w} \triangleright a}\left(w, a+b-w^{-1} \triangleright a\right)\right.\right. \\
& \mathcal{R} \text { satisfies: } \mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23}=\mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12} \text { and } \mathcal{R}_{13} \mathcal{R}_{23}=\mathcal{R}_{23} \mathcal{R}_{13} .
\end{aligned}
$$

Enrichments via operator algebras arXiv:1807.09551

Theorem Given any unitary representation V of $\mathbb{C}(\Gamma)$, we have a unitary representation of the loop braid group on $V \otimes \cdots \otimes V$. It is calculated from the following bikoid.

$$
\begin{aligned}
& ((z, a),(w, b)) \stackrel{X_{g r *}}{\stackrel{X^{+}}{+}} \quad\left(w, a+b-w^{-1} \triangleright a\right) \\
& \bar{w}=\left(w^{-1}, 0_{\operatorname{ker}(\partial)}\right) \quad-\bar{w} \triangleright a=\left(1_{G},-w^{-1} \triangleright a\right) \in G \ltimes \operatorname{ker}(\partial) \\
& \bar{w} \text { and }-\bar{w} \triangleright a \text { are interpreted as the 2D holonomies of the tubes } \\
& \text { traced by each loop when they move. Aharonov-Bohm phases? }
\end{aligned}
$$

$$
\begin{gathered}
{ }^{\prime} R-\text { matrix }^{\prime} \mathbb{C}(\Gamma) \otimes \mathbb{C}(\Gamma) \ni \mathcal{R}=\sum_{(z, a),(w, b) \in G \ltimes \operatorname{ker}(\partial)} \\
\left((z , a) \xrightarrow { \overline { w } } (w ^ { - 1 } z w , w ^ { - 1 } \triangleright a) \otimes \left((w, b) \xrightarrow{-\bar{w} \triangleright a}\left(w, a+b-w^{-1} \triangleright a\right)\right.\right.
\end{gathered}
$$

\mathcal{R} satisfies: $\mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23}=\mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12}$ and $\mathcal{R}_{13} \mathcal{R}_{23}=\mathcal{R}_{23} \mathcal{R}_{13}$.

References

- Bullivant A, Martin P, and Faria Martins J: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory, arXiv:1807.09551.
- Bullivant A, Calada M, Kdr Z, Martin P, and Faria Martins J: Higher lattices, discrete two-dimensional holonomy and topological phases in $(3+1)$ D with higher gauge symmetry, arXiv:1702.00868.
- Bullivant A, Calada M, Kdr Z, Martin P, and Faria Martins J:

Topological phases from higher gauge symmetry in $3+1$ dimensions.
PHYSICAL REVIEW B 95, 155118 (2017)

- Faria Martins J, Picken R..: Surface Holonomy for Non-Abelian 2-Bundles via Double Groupoids, Advances in Mathematics Volume 226, Issue 4, 1 March 2011, Pages 3309-3366
- Faria Martins J.: The Fundamental Crossed Module of the Complement of a Knotted Surface. Transactions of the American Mathematical Society. 361 (2009), 4593-4630.
- Faria Martins J., Kauffman L.H.: Invariants of Welded Virtual Knots Via Crossed Module Invariants of Knotted Surfaces, Compositio Mathematica. Volume 144, Issue 04, July 2008, pp 1046-1080.

