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» Let M be a manifold.

» A path in M is a piecewise smooth map 7: [0,1] - M.
We consider paths up to homotopy, relative to the end-points.

» Denote paths as (x N y), x and y are initial and end-points.

> Paths (x - y) and (y - z) can be concatenated into another
path

(x LYy D 2) = (x 25 2).
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Z

» Given a subset M® C M, we utilize the groupoid: My(M, M°)
» Set of objects is M°. Morphisms x — y are paths from x to y.
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Let G be a group. G will be finite throughout. M a manifold.
Given a principal G-bundle P — M, and local trivialisations,
we have the parallel transport of P.

F:{Paths in M} - G
y+—hol*(y) =g, € G

(Parallel transport is also called “holonomy™.)
Recall parallel transport preserves concatenation of paths:
F(x 2yl 5 2) = Flx B y) Fly 5 2)
Let M® C M. Principal G-bundles P hence give rise to functors
F:My(M, M°) — G,

and F completely determines P.

NB: must specify elements p, € F,, the fibre of P at v € MO,
If G is a Lie group, we need G-connection A in P.

Locally A € QY(M, g).
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Gauge Theory and Holonomy

Conversely, G-connections can be defined from their holonomy.

If G is finite, and M compact, we only need to know the holonomy
along a finite number of paths. The theory becomes combinatorial.
Combinatorially, a G-connection over M looks like:

c

ab

where a,b,c,d, e, f,g € G.

There are relations that must be satisfied on triangles.
The holonomy around each should be trivial.
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We define:

V(M, L) = Chom(My (M, M°), G) = C{Functions L* — G}.
T(M, L) =T],c10 G = {Functions L° — G},

the group of gauge operators U.

Given v € L% g € G, put US € T(M, L) to be the gauge
operator (called vertex operator) such that:

g ifx=v

Ug(x) =
v 1, otherwise

Left-action of T(M, L) on V(M, L), by gauge transformations:
Let F € hom(MNy(M, M®), G) and U € T(M, L)

> (UF)(x 5 y) = UX)F(x = y)U(y) ™
Given a plaquette P and g € G, define the plaquette operator:

. oL(P
DE(F) = {f, it Fup 25 ) = g

0, otherwise
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Hence GS(M, L) = V(M) does not depend on L and only on M.
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Extension to Higher Gauge Theory

> Higher gauge theory is a higher order version of gauge theory.

» Higher gauge theory allows us to formalise non-abelian
holonomy along paths, and also non-abelian holonomy along
surfaces.

» Higher order version of a group: a “2-group”.
> 2-groups are equivalent to crossed modules.
A crossed module of groups G = (0: E — G, ) is given by:

» a group map 0: E — G,
» and a left-action of G on E, by automorphisms, such that:

1. d(gre)=gd(e)g~ ! ifgec GandecE;
2. d(e)>e' =ee’e7l, ife e € E.

All crossed modules will be finite throughout the talk.
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Examples of crossed modules

Let G be a group with a left-action > on an abelian group A, by
automorphisms.

Put G = (A 222716, G b,

In the general example above put:

» G={£1}. A=Z3. gra=ga(mod 3).

» G = GL(Zp, n); i.e. n x n invertible matrices in Zp.
A = (Zp)". Here pis a prime.

Given a group H, put G = (H Lindisl N Aut(H)).
Here Adg(x) = gxg L.

Aut(H) is the automorphism group of H.
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Given G = (0: E — G,>) we can define "bigons" in G.

de)tg

RN

g

These compose horizontally and vertically:

de) g a(e)"th d(e)~lg a(e')th

g h gh

a(e')to(e) e a(e')to(e) g

W \/

g g
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2-dimensional holonomy functors
Horizontal and vertical compositions of bigons in G are associative,
and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

P PN

does not depend on the order whereby it is performed.
As a consequence evaluations of more complicated diagrams like:

A A%: T
S =
do not depend on the order whereby we apply compositions.
A very general result is in 1702.00868 [math-ph]

This leads to a notion of non-abelian multiplication along surfaces.
This notion underpins surface-holonomy in higher gauge theory.
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2-dimensional holonomy

A geometric bigon on in a manifold M is given by:

Two maps ~,v": [0,1] — M, with the same initial and end-point.
A homotopy X : [0,1]?> — M, connecting v and ~'.

Y is considered up to homotopy relative to 9([0, 1]?).

Geometric bigons are represented as:

/

o

/\
X Tz Ys
\_/

v

Geometric bigons can be concatenated horizontally and vertically.

» Definition Let M be a manifold; G a crossed module.
A 2-dimensional holonomy is a map:

{Geometric bigons in M} SR {Bigons in G}

Preserving horizontal and vertical compositions.
The underlying G-2-bundle can be reconstructed from F.
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Note: for Lie crossed modules (0: E — G,1>), 2-dimensional
holonomies arise from pairs A € Q*(M, g) and B € Q3(M,¢),
with O(B) = Curva = dA + 1[A, A].
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The HGT analogue of Kitaev quantum double model

Let G = (0: E — G,>) be a crossed module.

Let M be a manifold. Let L= (L% L', 12...) bea
CW-decomposition of M (some minor "non-wildness” conditions).
A discrete 2-connection F is given by an assignment
yeL' g, €Gand Pe?+— ep €E,

satisfying the fake-flatness condition:

If we have a configuration like:

Then: d(ep) = gﬁlgfygg'yzgm-
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The Hilbert space for the higher Kitaev model

» M a compact manifold of any dimension. Possibly with 9.

» Then we put ®(M, L) = {Discrete 2 — connections F}.

» And V(M,L) = Co(M,L).

> The group of gauge operators puts together gauge
transformations along vertices and along edges:

Tm =[x JI 5

0
vel o(t)Sr(t)ell

= {Functions L° — G} x {Functions L' — E}

Where U € [],c,0 G left-acts in n € [],c;1 E as:

(Un)(o(t) = 7(1) = U(o () > n((o(t) = 7(t)))

For S* with one vertex and one edge T(S!,L) = G x E.
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Discrete surface holonomy

Theorem: Let F € ®(M, L) be a discrete 2-connection.
» Given a 2-sphere ¥ cellularly embedded in M, and an initial
point v € X, we can define its 2-dimensional holonomy:

Hol2(F,¥) € ker(d) C E. arXiv:1702.00868

This surface-holonomy depends only on the starting point
v € X, and not in the order whereby we combine 2-cells.
If we change the base point then 2D holonomy changes by

actingby a g € G.

For example, consider the discrete 2-connection on the
tetrahedron X, below, based on the bottom left corner vg.

1

dg(e1) = gorg1a(gos) ™ Dg(ea) = g12923(913) ™" g (ea) = go2g23(g0s) ™

1

dg(e3) = gor1912(go2) "

Then Holeo(]-", Y)=¢ e;l egl g12 > éy4.
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» We have an action of the group of gauge operators T(M, L) on
®(M, L), preserving 2D holonomy, up to acting by G.

For edge operator, this action is defined from the 2D holonomy.
Given t € !, and e € E, let Uf be the unique gauge operator
supported in t with Ug(t) = e. (Called an edge gauge spike.)
Given v € L° and g € G, let Uf be the unique gauge operator
supported in v with U$(v) = g. (Called a vertex gauge spike.)
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Some examples of vertex gauge transformations:

1

G

dgler) = »9: 93 '92 ' 0 dg(er) = 59395 (992) " (9g1)
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Some examples of edge gauge transformations:

dgler) = w91 g5 ‘o5 ' o 95((9595 " 9595 e) ep) = 9595 95 95 ' (e)g1
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Some examples of edge gauge transformations:

95((9597 9595 " >e) ep) = gsgr g5 95 ' 0(e)g1
6(5)92

oz,

9glep) = 959195 '95 ‘o1 dg(ep gitpe™) = gsg5 g5 951 0(e) " n
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The higher Kitaev model

V(M, L) = C{Discrete 2 — connections F}.
Hamiltonian H: V(M, L) — V(M,L).

- ‘G|Zzug ‘E‘ZZUG ZCéE'

vell geG tell eecE bel3
== A-D Bi-> Cf
- v t b -
velo tell bel3

F, if 2hol(F,0b) = k
0, otherwise
All operator in the last sum are commuting self-adjoint projectors.

Where Cf(F) = , where k € ker(0).

CiE forces the surface-holonomy of a discrete 2-connection F to be
trivial along the boundary of the 3-cell b.

Algebra generated by the Uf, Uf and C[,‘ is our proposal for a
local operator algebra. Relations are in arXiv:1702.00868.
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®(M, L) = {Discrete 2 — connections}.

Theorem
®(M, L) = hom(Ma(M?, M, M®),G),  canonically

Where My(M?, M1, M) is the fundamental crossed module of the
filtered space (M2, M1, M©), a crossed module of groupoids.
Theorem The ground state of H: V(M, L) — V(M,L) is

GS(M, L)

= {F € C(hom(My(M, M* M°),G): U.F = F,YU € T(M,L)}.
=~ C{Maps M — Bg}/Homotopy, canonically .

Hence G(M, L) = V(L) depends only on M and not on L.

Here Bg is the classifying space of the crossed module G.
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» One l-simplex x £ % for each g € G.
» 2-simplices have the form (where g,h € G and e € E):
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Classifying space Bg of a crossed module G
As the geometric realisation of a simplicial set Bg has:
» one O-simplex {*}
» One l-simplex x £ % for each g € G.
» 2-simplices have the form (where g,h € G and e € E):

- h
g ® \
x> %
d(e)"1gh
» 3-simplices have the form

o1 912

o2 902

0g(e1) = gorgia(gos) ™" Dg(ea) = 912923(913) ™" Dg(e2) = go2g23(g0s) ™" Dg(es) = go1g12(go2) *

» n-simplices are analogously defined. Colourings of 1 and 2-cells
of the n-simplex, fake-flat on trianges and flat on tetrahedra,
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There is a (n+1)D TQFT whose state spaces V(M), M an
n-manifold, are the ground state of higher Kitaev over M:
the Yetter homotopy 2-type TQFT. 1606.06639 + 1702.00868

Yetter TQFT computes homotopy cardinality of certain function
spaces: math/0608484. Cf. Quinn total homotopy TQFT.

We stay in the homotopy language so:
V(M) = C{maps f: M — Bg}/homotopy.
For a cobordism M % M’ we have map V(M) Sw, V(M').
(If: M — Bgl]|owl[f": M — Bg])
= [[F1*2|[F)[V? {H: W — Bg: Hjpy = f and Hp = £}
Where |X| denotes homotopy cardinality of the space X.

_ |2 (X, x)[ [ma (X, )| |m6(X, x)]...
X = Z |1 (X, x)||73(X, x)|| 75 (X, x)|...

x€mo(X)
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Yetter TQFT yields invariants of 2-tangles (C R c') c D*
C alink in D3 x {0}. C’" alink in D3 x {1}.
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Diagrams as the one above generate the loop braid group LBGs>.
Given a 2-tangle T: C — C’ we can consider its complement.
This yields a “pointed cobordism” of manifolds Wt: M¢c — M.
Here Mc = (D3\ C, %), Mcr = (D3\ C, ), W = (D*\ T,* x I).
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Yetter / Quinn TQFT on complements loop braids (c.f.

arXiv:0704.1246).
Via the tube map. {Welded braids} — {Loop Braids}.

AN A welded braid.
(Diagrams are to be considered up to
welded Reidemeister moves.)
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The tube map in the vicinity of a classical and of a virtual crossing.



Crossed module representations of loop braids



Crossed module representations of loop braids
Let G = (0: E — G,>) be a crossed module.



Crossed module representations of loop braids

Let G = (0: E — G,>) be a crossed module. We have a
representation of the loop braid group WBG,, on C(G x ker 0)".



Crossed module representations of loop braids

Let G = (0: E — G,>) be a crossed module. We have a
representation of the loop braid group WBG,, on C(G x ker 0)".
It can be calculated by the following biquandle.



Crossed module representations of loop braids

Let G = (0: E — G,>) be a crossed module. We have a
representation of the loop braid group WBG,, on C(G x ker 0)".
It can be calculated by the following biquandle.

(z,0) (y,b) (2¢) (w, d)

/
/

(zyz~l,z>b) (z,a+b—cp>b) (w,d) (2,¢)



Crossed module representations of loop braids

Let G = (0: E — G,>) be a crossed module. We have a
representation of the loop braid group WBG,, on C(G x ker 0)".
It can be calculated by the following biquandle.

(z,0) (y,b) (2¢) (w, d)

(zyz~l,z>b) (z,a+b—cp>b) (w,d) (2,¢)

The extension to representations of the necklace braid group is
quite do-able. (Though it has not been written down.)



Crossed module representations of loop braids
Let G = (0: E — G,>) be a crossed module. We have a
representation of the loop braid group WBG,, on C(G x ker 0)".
It can be calculated by the following biquandle.
(z,0) (y,b) (z:¢) (w,d)

(zyz~l,z>b) (z,a+b—cp>b) (w,d) (2,¢)
The extension to representations of the necklace braid group is
quite do-able. (Though it has not been written down.)

And given the algebraic topological interpretation as maps to Bg

one can also consider homology twistings via cocyles
w € HY(Bg, U(1)).



Crossed module representations of loop braids
Let G = (0: E — G,>) be a crossed module. We have a
representation of the loop braid group WBG,, on C(G x ker 0)".
It can be calculated by the following biquandle.
(z,0) (y,b) (z:¢) (w,d)

(zyz~l,z>b) (z,a+b—cp>b) (w,d) (2,¢)
The extension to representations of the necklace braid group is
quite do-able. (Though it has not been written down.)

And given the algebraic topological interpretation as maps to Bg

one can also consider homology twistings via cocyles
w € H*(Bg, U(1)). Done for closed manifolds only. math/0608484
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X,Y € G, e, f € ker(0).
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Let G = (0: E — G,>) be a crossed module.

Let I be the action groupoid of the conjugation action of
G % ker(0) on itself.

Arrows of I have the form:

7b —_ —
(x,2) L2 (y, )b (x,8) = (v b+ yoa— (yxy ) o b).
Consider the groupoid algebra C(I') of T.

This algebra is isomorphic to the underlying algebra of the
quantum double of the group-algebra of G x ker(9).
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Theorem Given any unitary representation V of C(I'), we have a
unitary representation of the loop braid groupon V®---® V.
It is calculated from the following bikoid.
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Theorem Given any unitary representation V of C(I'), we have a
unitary representation of the loop braid groupon V®---® V.
It is calculated from the following bikoid.

(z,a) / (w, b)

((2,0), (w, b)) ¥ T .

(w,a +b—w™'>a) (w™tzw, w™tra)

W= (w1, Oker()) —wra=(lg,—w 1>a) € G xker(9)
w and —w > a are interpreted as the 2D holonomies of the tubes
traced by each loop when they move. Aharonov-Bohm phases?

'R — matrix’ CM®@C((MN) >R =

>

(z,a),(w,b)eGxker(9)
((z,a) Yy (wlzw, wl>a)® ((w, b) = (w,a+b— wl>a)

R satisfies: R12R13R23 = R23R13R12 and R13R23 = R23R13.
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