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(Discrete) gauge theory and holonomy

I Let M be a manifold.

I A path in M is a piecewise smooth map γ : [0, 1]→ M.
We consider paths up to homotopy, relative to the end-points.

I Denote paths as (x
γ−→ y), x and y are initial and end-points.

I Paths (x
γ−→ y) and (y

γ′−→ z) can be concatenated into another
path

(x
γ−→ y)(y

γ′−→ z) = (x
γ γ′−−→ z).

I Given a subset M0 ⊂ M, we utilize the groupoid: Π1(M,M0)

I Set of objects is M0. Morphisms x → y are paths from x to y .
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Gauge Theory and Holonomy
Let G be a group. G will be finite throughout. M a manifold.
Given a principal G -bundle P → M, and local trivialisations,
we have the parallel transport of P.

F : {Paths in M} → G
γ 7−→ hol1(γ) = gγ ∈ G

(Parallel transport is also called “holonomy”.)
Recall parallel transport preserves concatenation of paths:

F
(
(x

γ−→ y)(y
γ′−→ z)

)
= F(x

γ−→ y) F(y
γ′−→ z)

Let M0 ⊂ M. Principal G -bundles P hence give rise to functors

F : Π1(M,M0)→ G ,

and F completely determines P.
NB: must specify elements pv ∈ Fv , the fibre of P at v ∈ M0.
If G is a Lie group, we need G -connection A in P.
Locally A ∈ Ω1(M, g).
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Gauge Theory and Holonomy

Conversely, G -connections can be defined from their holonomy.
If G is finite, and M compact, we only need to know the holonomy
along a finite number of paths. The theory becomes combinatorial.
Combinatorially, a G -connection over M looks like:

where a, b, c , d , e, f , g ∈ G .

There are relations that must be satisfied on triangles.
The holonomy around each should be trivial.
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Kitaev Quantum Double Model
I Let M be a manifold with a decomposition L into ’cells’:

vertices v ∈ L0, edges t ∈ L1, plaquettes P ∈ L2, blobs b ∈ L3

...
I Concretely consider a manifold with a CW-decomposition.
I All cells c have a base-point vc ∈ L0.
I We let M i ⊂ M be the union of all cells of dimension ≤ i .
I A plaquette P ∈ L2 attaches to M1 along ∂L(P) ∈ π1(M1,M0).

∂L(P) = (vP
γ−1

4 γ3γ2γ1−−−−−−→ vP)

I Functors F : Π1(M1,M0)→ G are the same as maps L1 → G .

Functors F : Π1(M,M0)→ G are functors F : Π1(M1,M0)→ G
such that F(∂L(P)) = 1G ,∀P ∈ L2.



Kitaev Quantum Double Model
I Let M be a manifold with a decomposition L into ’cells’:

vertices v ∈ L0, edges t ∈ L1, plaquettes P ∈ L2, blobs b ∈ L3

...
I Concretely consider a manifold with a CW-decomposition.
I All cells c have a base-point vc ∈ L0.
I We let M i ⊂ M be the union of all cells of dimension ≤ i .
I A plaquette P ∈ L2 attaches to M1 along ∂L(P) ∈ π1(M1,M0).

∂L(P) = (vP
γ−1

4 γ3γ2γ1−−−−−−→ vP)

I Functors F : Π1(M1,M0)→ G are the same as maps L1 → G .

Functors F : Π1(M,M0)→ G are functors F : Π1(M1,M0)→ G
such that F(∂L(P)) = 1G ,∀P ∈ L2.



Kitaev Quantum Double Model
I Let M be a manifold with a decomposition L into ’cells’:

vertices v ∈ L0, edges t ∈ L1, plaquettes P ∈ L2, blobs b ∈ L3

...
I Concretely consider a manifold with a CW-decomposition.
I All cells c have a base-point vc ∈ L0.
I We let M i ⊂ M be the union of all cells of dimension ≤ i .
I A plaquette P ∈ L2 attaches to M1 along ∂L(P) ∈ π1(M1,M0).

∂L(P) = (vP
γ−1

4 γ3γ2γ1−−−−−−→ vP)

I Functors F : Π1(M1,M0)→ G are the same as maps L1 → G .

Functors F : Π1(M,M0)→ G are functors F : Π1(M1,M0)→ G
such that F(∂L(P)) = 1G ,∀P ∈ L2.



Kitaev Quantum Double Model
I Let M be a manifold with a decomposition L into ’cells’:

vertices v ∈ L0, edges t ∈ L1, plaquettes P ∈ L2, blobs b ∈ L3

...
I Concretely consider a manifold with a CW-decomposition.
I All cells c have a base-point vc ∈ L0.
I We let M i ⊂ M be the union of all cells of dimension ≤ i .
I A plaquette P ∈ L2 attaches to M1 along ∂L(P) ∈ π1(M1,M0).

∂L(P) = (vP
γ−1

4 γ3γ2γ1−−−−−−→ vP)

I Functors F : Π1(M1,M0)→ G are the same as maps L1 → G .

Functors F : Π1(M,M0)→ G are functors F : Π1(M1,M0)→ G
such that F(∂L(P)) = 1G ,∀P ∈ L2.



Kitaev Quantum Double Model
I Let M be a manifold with a decomposition L into ’cells’:

vertices v ∈ L0, edges t ∈ L1, plaquettes P ∈ L2, blobs b ∈ L3

...
I Concretely consider a manifold with a CW-decomposition.
I All cells c have a base-point vc ∈ L0.
I We let M i ⊂ M be the union of all cells of dimension ≤ i .
I A plaquette P ∈ L2 attaches to M1 along ∂L(P) ∈ π1(M1,M0).

∂L(P) = (vP
γ−1

4 γ3γ2γ1−−−−−−→ vP)

I Functors F : Π1(M1,M0)→ G are the same as maps L1 → G .

Functors F : Π1(M,M0)→ G are functors F : Π1(M1,M0)→ G
such that F(∂L(P)) = 1G ,∀P ∈ L2.



Kitaev Quantum Double Model
I Let M be a manifold with a decomposition L into ’cells’:

vertices v ∈ L0, edges t ∈ L1, plaquettes P ∈ L2, blobs b ∈ L3

...
I Concretely consider a manifold with a CW-decomposition.
I All cells c have a base-point vc ∈ L0.
I We let M i ⊂ M be the union of all cells of dimension ≤ i .
I A plaquette P ∈ L2 attaches to M1 along ∂L(P) ∈ π1(M1,M0).

∂L(P) = (vP
γ−1

4 γ3γ2γ1−−−−−−→ vP)

I Functors F : Π1(M1,M0)→ G are the same as maps L1 → G .

Functors F : Π1(M,M0)→ G are functors F : Π1(M1,M0)→ G
such that F(∂L(P)) = 1G ,∀P ∈ L2.



Kitaev Quantum Double Model
I Let M be a manifold with a decomposition L into ’cells’:

vertices v ∈ L0, edges t ∈ L1, plaquettes P ∈ L2, blobs b ∈ L3

...
I Concretely consider a manifold with a CW-decomposition.
I All cells c have a base-point vc ∈ L0.
I We let M i ⊂ M be the union of all cells of dimension ≤ i .
I A plaquette P ∈ L2 attaches to M1 along ∂L(P) ∈ π1(M1,M0).

∂L(P) = (vP
γ−1

4 γ3γ2γ1−−−−−−→ vP)

I Functors F : Π1(M1,M0)→ G are the same as maps L1 → G .

Functors F : Π1(M,M0)→ G are functors F : Π1(M1,M0)→ G
such that F(∂L(P)) = 1G ,∀P ∈ L2.



Kitaev Quantum Double Model
I Let M be a manifold with a decomposition L into ’cells’:

vertices v ∈ L0, edges t ∈ L1, plaquettes P ∈ L2, blobs b ∈ L3

...
I Concretely consider a manifold with a CW-decomposition.
I All cells c have a base-point vc ∈ L0.
I We let M i ⊂ M be the union of all cells of dimension ≤ i .
I A plaquette P ∈ L2 attaches to M1 along ∂L(P) ∈ π1(M1,M0).

∂L(P) = (vP
γ−1

4 γ3γ2γ1−−−−−−→ vP)

I Functors F : Π1(M1,M0)→ G are the same as maps L1 → G .

Functors F : Π1(M,M0)→ G are functors F : Π1(M1,M0)→ G
such that F(∂L(P)) = 1G ,∀P ∈ L2.



Kitaev Quantum Double Model
I Let M be a manifold with a decomposition L into ’cells’:

vertices v ∈ L0, edges t ∈ L1, plaquettes P ∈ L2, blobs b ∈ L3

...
I Concretely consider a manifold with a CW-decomposition.
I All cells c have a base-point vc ∈ L0.
I We let M i ⊂ M be the union of all cells of dimension ≤ i .
I A plaquette P ∈ L2 attaches to M1 along ∂L(P) ∈ π1(M1,M0).

∂L(P) = (vP
γ−1

4 γ3γ2γ1−−−−−−→ vP)

I Functors F : Π1(M1,M0)→ G are the same as maps L1 → G .

Functors F : Π1(M,M0)→ G are functors F : Π1(M1,M0)→ G
such that F(∂L(P)) = 1G ,∀P ∈ L2.



Kitaev Quantum Double Model
I Let M be a manifold with a decomposition L into ’cells’:

vertices v ∈ L0, edges t ∈ L1, plaquettes P ∈ L2, blobs b ∈ L3

...
I Concretely consider a manifold with a CW-decomposition.
I All cells c have a base-point vc ∈ L0.
I We let M i ⊂ M be the union of all cells of dimension ≤ i .
I A plaquette P ∈ L2 attaches to M1 along ∂L(P) ∈ π1(M1,M0).

∂L(P) = (vP
γ−1

4 γ3γ2γ1−−−−−−→ vP)

I Functors F : Π1(M1,M0)→ G are the same as maps L1 → G .

Functors F : Π1(M,M0)→ G are functors F : Π1(M1,M0)→ G
such that F(∂L(P)) = 1G ,∀P ∈ L2.



Kitaev Quantum Double Model
I Let M be a manifold with a decomposition L into ’cells’:

vertices v ∈ L0, edges t ∈ L1, plaquettes P ∈ L2, blobs b ∈ L3

...
I Concretely consider a manifold with a CW-decomposition.
I All cells c have a base-point vc ∈ L0.
I We let M i ⊂ M be the union of all cells of dimension ≤ i .
I A plaquette P ∈ L2 attaches to M1 along ∂L(P) ∈ π1(M1,M0).

∂L(P) = (vP
γ−1

4 γ3γ2γ1−−−−−−→ vP)

I Functors F : Π1(M1,M0)→ G are the same as maps L1 → G .

Functors F : Π1(M,M0)→ G are functors F : Π1(M1,M0)→ G
such that F(∂L(P)) = 1G ,∀P ∈ L2.



Kitaev Quantum Double Model
I Let M be a manifold with a decomposition L into ’cells’:

vertices v ∈ L0, edges t ∈ L1, plaquettes P ∈ L2, blobs b ∈ L3

...
I Concretely consider a manifold with a CW-decomposition.
I All cells c have a base-point vc ∈ L0.
I We let M i ⊂ M be the union of all cells of dimension ≤ i .
I A plaquette P ∈ L2 attaches to M1 along ∂L(P) ∈ π1(M1,M0).

∂L(P) = (vP
γ−1

4 γ3γ2γ1−−−−−−→ vP)

I Functors F : Π1(M1,M0)→ G are the same as maps L1 → G .

Functors F : Π1(M,M0)→ G are functors F : Π1(M1,M0)→ G
such that F(∂L(P)) = 1G ,∀P ∈ L2.



Kitaev Quantum Double Model
I Let M be a manifold with a decomposition L into ’cells’:

vertices v ∈ L0, edges t ∈ L1, plaquettes P ∈ L2, blobs b ∈ L3

...
I Concretely consider a manifold with a CW-decomposition.
I All cells c have a base-point vc ∈ L0.
I We let M i ⊂ M be the union of all cells of dimension ≤ i .
I A plaquette P ∈ L2 attaches to M1 along ∂L(P) ∈ π1(M1,M0).

∂L(P) = (vP
γ−1

4 γ3γ2γ1−−−−−−→ vP)

I Functors F : Π1(M1,M0)→ G are the same as maps L1 → G .

Functors F : Π1(M,M0)→ G are functors F : Π1(M1,M0)→ G
such that F(∂L(P)) = 1G ,∀P ∈ L2.



Kitaev Quantum Double Model
I Let M be a manifold with a decomposition L into ’cells’:

vertices v ∈ L0, edges t ∈ L1, plaquettes P ∈ L2, blobs b ∈ L3

...
I Concretely consider a manifold with a CW-decomposition.
I All cells c have a base-point vc ∈ L0.
I We let M i ⊂ M be the union of all cells of dimension ≤ i .
I A plaquette P ∈ L2 attaches to M1 along ∂L(P) ∈ π1(M1,M0).

∂L(P) = (vP
γ−1

4 γ3γ2γ1−−−−−−→ vP)

I Functors F : Π1(M1,M0)→ G are the same as maps L1 → G .

Functors F : Π1(M,M0)→ G are functors F : Π1(M1,M0)→ G
such that F(∂L(P)) = 1G ,∀P ∈ L2.



Kitaev Quantum Double Model
I Let M be a manifold with a decomposition L into ’cells’:

vertices v ∈ L0, edges t ∈ L1, plaquettes P ∈ L2, blobs b ∈ L3

...
I Concretely consider a manifold with a CW-decomposition.
I All cells c have a base-point vc ∈ L0.
I We let M i ⊂ M be the union of all cells of dimension ≤ i .
I A plaquette P ∈ L2 attaches to M1 along ∂L(P) ∈ π1(M1,M0).

∂L(P) = (vP
γ−1

4 γ3γ2γ1−−−−−−→ vP)

I Functors F : Π1(M1,M0)→ G are the same as maps L1 → G .

Functors F : Π1(M,M0)→ G are functors F : Π1(M1,M0)→ G
such that F(∂L(P)) = 1G ,∀P ∈ L2.



Kitaev Quantum Double Model
I Let M be a manifold with a decomposition L into ’cells’:

vertices v ∈ L0, edges t ∈ L1, plaquettes P ∈ L2, blobs b ∈ L3

...
I Concretely consider a manifold with a CW-decomposition.
I All cells c have a base-point vc ∈ L0.
I We let M i ⊂ M be the union of all cells of dimension ≤ i .
I A plaquette P ∈ L2 attaches to M1 along ∂L(P) ∈ π1(M1,M0).

∂L(P) = (vP
γ−1

4 γ3γ2γ1−−−−−−→ vP)

I Functors F : Π1(M1,M0)→ G are the same as maps L1 → G .

Functors F : Π1(M,M0)→ G are functors F : Π1(M1,M0)→ G
such that F(∂L(P)) = 1G ,∀P ∈ L2.



Kitaev Quantum Double Model

I We define:
V (M, L) = C hom(Π1(M1,M0),G ) = C{Functions L1 → G}.

I T (M, L) =
∏

v∈L0 G = {Functions L0 → G},
the group of gauge operators U.

I Given v ∈ L0, g ∈ G , put Ug
v ∈ T (M, L) to be the gauge

operator (called vertex operator) such that:

Ug
v (x) =

{
g , if x = v

1G , otherwise

I Left-action of T (M, L) on V (M, L), by gauge transformations:
Let F ∈ hom(Π1(M1,M0),G ) and U ∈ T (M, L)

I (U.F)(x
γ−→ y) = U(x)F(x

γ−→ y)U(y)−1.

I Given a plaquette P and g ∈ G , define the plaquette operator:

Dg
P(F) =

{
F , if F(vP

∂L(P)−−−→ vP) = g

0, otherwise
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The Kitaev Quantum Double Model (quant-ph/9707021)
(Slightly different language, as in 1702.00868 [math-ph])
M with CW-decomposition L. V (M, L) = C hom(Π1(M1,M0),G ).
Consider the hamiltonian H : V (M, L)→ V (L,M).

H = −
∑
v∈L0

∑
g∈G

1

|G |
Ug
v −

∑
P∈L2

D1G
P = −

∑
v∈L0

Av −
∑
P∈L2

D1G
P

All the Av and D1G
P are commuting, self-adjoint, projectors.

Theorem: The ground state GS(M, L) of H is:

GS(M, L) = {F ∈ C(hom(Π1(M,M0),G ) : U.F = F ,∀U ∈ T (L,G )}

GS(M, L) ∼= C{Maps M → BG}/homotopy , canonically.
Here BG is the classifying space of G .

Hence GS(M, L) = V (M) does not depend on L and only on M.
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P are commuting, self-adjoint, projectors.

Theorem: The ground state GS(M, L) of H is:

GS(M, L) = {F ∈ C(hom(Π1(M,M0),G ) : U.F = F ,∀U ∈ T (L,G )}

GS(M, L) ∼= C{Maps M → BG}/homotopy , canonically.
Here BG is the classifying space of G .

Hence GS(M, L) = V (M) does not depend on L and only on M.
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Extension to Higher Gauge Theory

I Higher gauge theory is a higher order version of gauge theory.

I Higher gauge theory allows us to formalise non-abelian
holonomy along paths, and also non-abelian holonomy along
surfaces.

I Higher order version of a group: a “2-group”.

I 2-groups are equivalent to crossed modules.

A crossed module of groups G = (∂ : E → G , .) is given by:
I a group map ∂ : E → G ,
I and a left-action of G on E , by automorphisms, such that:

1. ∂(g . e) = g∂(e)g−1, if g ∈ G and e ∈ E ;

2. ∂(e) . e′ = ee′e−1, if e, e′ ∈ E .

All crossed modules will be finite throughout the talk.
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Examples of crossed modules

Let G be a group with a left-action . on an abelian group A, by
automorphisms.

Put G = (A
a∈A7→1G−−−−−→ G , .).

In the general example above put:

I G = {±1}. A = Z3. g . a = ga (mod 3).

I G = GL(Zp, n); i.e. n × n invertible matrices in Zp.
A = (Zp)n. Here p is a prime.

Given a group H, put G = (H
g 7→Adg−−−−−→ Aut(H)).

Here Adg (x) = gxg−1.
Aut(H) is the automorphism group of H.



Examples of crossed modules

Let G be a group with a left-action . on an abelian group A, by
automorphisms.

Put G = (A
a∈A7→1G−−−−−→ G , .).

In the general example above put:

I G = {±1}. A = Z3. g . a = ga (mod 3).

I G = GL(Zp, n); i.e. n × n invertible matrices in Zp.
A = (Zp)n. Here p is a prime.

Given a group H, put G = (H
g 7→Adg−−−−−→ Aut(H)).

Here Adg (x) = gxg−1.
Aut(H) is the automorphism group of H.



Examples of crossed modules

Let G be a group with a left-action . on an abelian group A, by
automorphisms.

Put G = (A
a∈A7→1G−−−−−→ G , .).

In the general example above put:

I G = {±1}. A = Z3. g . a = ga (mod 3).

I G = GL(Zp, n); i.e. n × n invertible matrices in Zp.
A = (Zp)n. Here p is a prime.

Given a group H, put G = (H
g 7→Adg−−−−−→ Aut(H)).

Here Adg (x) = gxg−1.
Aut(H) is the automorphism group of H.



Examples of crossed modules

Let G be a group with a left-action . on an abelian group A, by
automorphisms.

Put G = (A
a∈A7→1G−−−−−→ G , .).

In the general example above put:

I G = {±1}. A = Z3. g . a = ga (mod 3).

I G = GL(Zp, n); i.e. n × n invertible matrices in Zp.
A = (Zp)n. Here p is a prime.

Given a group H, put G = (H
g 7→Adg−−−−−→ Aut(H)).

Here Adg (x) = gxg−1.
Aut(H) is the automorphism group of H.



Examples of crossed modules

Let G be a group with a left-action . on an abelian group A, by
automorphisms.

Put G = (A
a∈A7→1G−−−−−→ G , .).

In the general example above put:

I G = {±1}. A = Z3. g . a = ga (mod 3).

I G = GL(Zp, n); i.e. n × n invertible matrices in Zp.
A = (Zp)n. Here p is a prime.

Given a group H, put G = (H
g 7→Adg−−−−−→ Aut(H)).

Here Adg (x) = gxg−1.
Aut(H) is the automorphism group of H.



Examples of crossed modules

Let G be a group with a left-action . on an abelian group A, by
automorphisms.

Put G = (A
a∈A7→1G−−−−−→ G , .).

In the general example above put:

I G = {±1}. A = Z3. g . a = ga (mod 3).

I G = GL(Zp, n); i.e. n × n invertible matrices in Zp.
A = (Zp)n. Here p is a prime.

Given a group H, put G = (H
g 7→Adg−−−−−→ Aut(H)).

Here Adg (x) = gxg−1.
Aut(H) is the automorphism group of H.



Examples of crossed modules

Let G be a group with a left-action . on an abelian group A, by
automorphisms.

Put G = (A
a∈A7→1G−−−−−→ G , .).

In the general example above put:

I G = {±1}. A = Z3. g . a = ga (mod 3).

I G = GL(Zp, n); i.e. n × n invertible matrices in Zp.
A = (Zp)n. Here p is a prime.

Given a group H, put G = (H
g 7→Adg−−−−−→ Aut(H)).

Here Adg (x) = gxg−1.
Aut(H) is the automorphism group of H.



Examples of crossed modules

Let G be a group with a left-action . on an abelian group A, by
automorphisms.

Put G = (A
a∈A7→1G−−−−−→ G , .).

In the general example above put:

I G = {±1}. A = Z3. g . a = ga (mod 3).

I G = GL(Zp, n); i.e. n × n invertible matrices in Zp.
A = (Zp)n. Here p is a prime.

Given a group H, put G = (H
g 7→Adg−−−−−→ Aut(H)).

Here Adg (x) = gxg−1.
Aut(H) is the automorphism group of H.



Examples of crossed modules

Let G be a group with a left-action . on an abelian group A, by
automorphisms.

Put G = (A
a∈A7→1G−−−−−→ G , .).

In the general example above put:

I G = {±1}. A = Z3. g . a = ga (mod 3).

I G = GL(Zp, n); i.e. n × n invertible matrices in Zp.
A = (Zp)n. Here p is a prime.

Given a group H, put G = (H
g 7→Adg−−−−−→ Aut(H)).

Here Adg (x) = gxg−1.
Aut(H) is the automorphism group of H.



Examples of crossed modules

Let G be a group with a left-action . on an abelian group A, by
automorphisms.

Put G = (A
a∈A7→1G−−−−−→ G , .).

In the general example above put:

I G = {±1}. A = Z3. g . a = ga (mod 3).

I G = GL(Zp, n); i.e. n × n invertible matrices in Zp.
A = (Zp)n. Here p is a prime.

Given a group H, put G = (H
g 7→Adg−−−−−→ Aut(H)).

Here Adg (x) = gxg−1.
Aut(H) is the automorphism group of H.



Examples of crossed modules

Let G be a group with a left-action . on an abelian group A, by
automorphisms.

Put G = (A
a∈A7→1G−−−−−→ G , .).

In the general example above put:

I G = {±1}. A = Z3. g . a = ga (mod 3).

I G = GL(Zp, n); i.e. n × n invertible matrices in Zp.
A = (Zp)n. Here p is a prime.

Given a group H, put G = (H
g 7→Adg−−−−−→ Aut(H)).

Here Adg (x) = gxg−1.
Aut(H) is the automorphism group of H.



2-dimensional holonomy functors
Given G = (∂ : E → G , .) we can define ”bigons“ in G.
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2-dimensional holonomy functors
Horizontal and vertical compositions of bigons in G are associative,
and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

##//;;
%%// 88 =

##//;;

does not depend on the order whereby it is performed.
As a consequence evaluations of more complicated diagrams like:

## ��

00

//;;
$$##//;;
%%// 88 CC=

//

OO DD
##;;

do not depend on the order whereby we apply compositions.
A very general result is in 1702.00868 [math-ph]
This leads to a notion of non-abelian multiplication along surfaces.
This notion underpins surface-holonomy in higher gauge theory.
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2-dimensional holonomy
A geometric bigon on in a manifold M is given by:
Two maps γ, γ′ : [0, 1]→ M, with the same initial and end-point.
A homotopy Σ: [0, 1]2 → M, connecting γ and γ′.
Σ is considered up to homotopy relative to ∂([0, 1]2).
Geometric bigons are represented as:

x

γ′

((

γ

66⇑ Σ y ,

Geometric bigons can be concatenated horizontally and vertically.

I Definition Let M be a manifold; G a crossed module.
A 2-dimensional holonomy is a map:

{Geometric bigons in M} F−→ {Bigons in G}

Preserving horizontal and vertical compositions.
The underlying G-2-bundle can be reconstructed from F .
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2D holonomy along Σ

=

∂(eΣ)−1gγ2

''

gγ2

77⇑ eΣ ,

Note: for Lie crossed modules (∂ : E → G , .), 2-dimensional
holonomies arise from pairs A ∈ Ω1(M, g) and B ∈ Ω2(M, e),
with ∂(B) = CurvA = dA + 1

2 [A,A].
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The HGT analogue of Kitaev quantum double model
Let G = (∂ : E → G , .) be a crossed module.
Let M be a manifold. Let L = (L0, L1, L2, . . . ) be a
CW-decomposition of M (some minor ”non-wildness” conditions).
A discrete 2-connection F is given by an assignment
γ ∈ L1 7→ gγ ∈ G and P ∈ L2 7→ eP ∈ E ,
satisfying the fake-flatness condition:
If we have a configuration like:

Then: ∂(eP) = g−1
γ4

gγ3gγ2gγ1 .
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If we have a configuration like:

Then: ∂(eP) = g−1
γ4

gγ3gγ2gγ1 .
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The Hilbert space for the higher Kitaev model

I M a compact manifold of any dimension. Possibly with ∂.

I Then we put Φ(M, L) = {Discrete 2− connections F}.
I And V (M, L) = CΦ(M, L).

I The group of gauge operators puts together gauge
transformations along vertices and along edges:

T (M, L) = (
∏
v∈L0

G ) n (
∏

σ(t)
t−→τ(t)∈L1

E )

= {Functions L0 → G}n {Functions L1 → E}

Where U ∈
∏

v∈L0 G left-acts in η ∈
∏

t∈L1 E as:

(U.η)(σ(t)
t−→ τ(t)) = U(σ(t)) . η((σ(t)

t−→ τ(t)))

For S1 with one vertex and one edge T (S1, L) = G n E .
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Discrete surface holonomy
Theorem: Let F ∈ Φ(M, L) be a discrete 2-connection.
I Given a 2-sphere Σ cellularly embedded in M, and an initial

point v ∈ Σ, we can define its 2-dimensional holonomy:
Hol2v (F ,Σ) ∈ ker(∂) ⊂ E . arXiv:1702.00868
This surface-holonomy depends only on the starting point
v ∈ Σ, and not in the order whereby we combine 2-cells.
If we change the base point then 2D holonomy changes by
acting by a g ∈ G .
For example, consider the discrete 2-connection on the
tetrahedron Σ, below, based on the bottom left corner v0.

Then Hol2v0
(F ,Σ) = e1 e−1

2 e−1
3 g12 . e4.
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Action of the group of gauge operators
I We have an action of the group of gauge operators T (M, L) on

Φ(M, L), preserving 2D holonomy, up to acting by G .

For edge operator, this action is defined from the 2D holonomy.
Given t ∈ L1, and e ∈ E , let Ue

t be the unique gauge operator
supported in t with Ue

t (t) = e. (Called an edge gauge spike.)
Given v ∈ L0, and g ∈ G , let Ue

t be the unique gauge operator
supported in v with Ug

v (v) = g . (Called a vertex gauge spike.)
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The higher Kitaev model
V (M, L) = C{Discrete 2− connections F}.
Hamiltonian H : V (M, L)→ V (M, L).

H = − 1

|G |
∑
v∈L0

∑
g∈G

Ûg
v −

1

|E |
∑
t∈L1

∑
e∈E

Ûe
t −

∑
b∈L3

C1E
b .

H = −
∑
v∈L0

Av −
∑
t∈L1

Bt −
∑
b∈L3

C1E
b .

Where Ckb (F) =

{
F , if 2hol(F , ∂b) = k

0, otherwise
, where k ∈ ker(∂).

All operator in the last sum are commuting self-adjoint projectors.

C1E
b forces the surface-holonomy of a discrete 2-connection F to be

trivial along the boundary of the 3-cell b.

Algebra generated by the Ug
t , Ue

t and C k
b is our proposal for a

local operator algebra. Relations are in arXiv:1702.00868.
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b forces the surface-holonomy of a discrete 2-connection F to be

trivial along the boundary of the 3-cell b.

Algebra generated by the Ug
t , Ue

t and C k
b is our proposal for a

local operator algebra. Relations are in arXiv:1702.00868.
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Ground state degeneracy of higher Kitaev model

Φ(M, L) = {Discrete 2− connections}.

Theorem

Φ(M, L) ∼= hom(Π2(M2,M1,M0),G), canonically

Where Π2(M2,M1,M0) is the fundamental crossed module of the
filtered space (M2,M1,M0), a crossed module of groupoids.
Theorem The ground state of H : V (M, L)→ V (M, L) is
GS(M, L)
= {F ∈ C(hom(Π2(M,M1,M0),G) : U.F = F , ∀U ∈ T (M, L)}.
∼= C{Maps M → BG}/Homotopy , canonically .

Hence G (M, L) = V (L) depends only on M and not on L.

Here BG is the classifying space of the crossed module G.
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Classifying space BG of a crossed module G
As the geometric realisation of a simplicial set BG has:
I one 0-simplex {∗}
I One 1-simplex ∗ g−→ ∗ for each g ∈ G .
I 2-simplices have the form (where g , h ∈ G and e ∈ E ):

∗
h

##
e�

∗

g
;;

∂(e)−1gh
// ∗

I 3-simplices have the form

I n-simplices are analogously defined. Colourings of 1 and 2-cells
of the n-simplex, fake-flat on trianges and flat on tetrahedra,
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Underpinning TQFT and invariants of loop braids
There is a (n+1)D TQFT whose state spaces V (M), M an
n-manifold, are the ground state of higher Kitaev over M:
the Yetter homotopy 2-type TQFT. 1606.06639 + 1702.00868

Yetter TQFT computes homotopy cardinality of certain function
spaces: math/0608484. Cf. Quinn total homotopy TQFT.

We stay in the homotopy language so:

V (M) = C{maps f : M → BG}/homotopy .

For a cobordism M
W−→ M ′, we have map V (M)

ΦW−−→ V (M ′).
〈[f : M → BG ]|ΦW |[f ′ : M → BG ]〉

= |[f ]|1/2|[f ′]|1/2 |{H : W → BG : H|M = f and H|M′ = f ′}|
Where |X | denotes homotopy cardinality of the space X .

|X | =
∑

x∈π0(X )

|π2(X , x)| |π4(X , x)| |π6(X , x)|...
|π1(X , x)||π3(X , x)||π5(X , x)|...
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Underpinning TQFT and invariants of loop braids
There is a (n+1)D TQFT whose state spaces V (M), M an
n-manifold, are the ground state of higher Kitaev over M:
the Yetter homotopy 2-type TQFT. 1606.06639 + 1702.00868

Yetter TQFT computes homotopy cardinality of certain function
spaces: math/0608484. Cf. Quinn total homotopy TQFT.

We stay in the homotopy language so:
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Invariants of 2-tangles in the 4-disk D4

Yetter TQFT yields invariants of 2-tangles (C
T−→ C ′) ⊂ D4.

C a link in D3 × {0}. C ′ a link in D3 × {1}.
And T ⊂ D4 = [0, 1]4 a surface connecting C and C ′.

Diagrams as the one above generate the loop braid group LBG2.
Given a 2-tangle T : C → C ′ we can consider its complement.
This yields a “pointed cobordism” of manifolds WT : MC → MC ′ .
Here MC = (D3 \C , ∗), MC ′ = (D3 \C , ∗)′, WT = (D4 \T , ∗× I ).
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The tube map: {Welded knots} → {Loop braids}
Yetter / Quinn TQFT on complements loop braids (c.f.
arXiv:0704.1246).
Via the tube map. {Welded braids} → {Loop Braids}.

A welded braid.
(Diagrams are to be considered up to
welded Reidemeister moves.)

The tube map in the vicinity of a classical and of a virtual crossing.
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Crossed module representations of loop braids
Let G = (∂ : E → G , .) be a crossed module. We have a
representation of the loop braid group WBGn on C(G × ker ∂)n.
It can be calculated by the following biquandle.

The extension to representations of the necklace braid group is
quite do-able. (Though it has not been written down.)
And given the algebraic topological interpretation as maps to BG
one can also consider homology twistings via cocyles
ω ∈ H4(BG ,U(1)). Done for closed manifolds only. math/0608484
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Crossed module representations of loop braids

X ,Y ∈ G , e, f ∈ ker(∂).



Enrichments via operator algebras arXiv:1807.09551

Let G = (∂ : E → G , .) be a crossed module.
Let Γ be the action groupoid of the conjugation action of
G n ker(∂) on itself.
Arrows of Γ have the form:

(x , a)
(y ,b)−−−→ (y , b) . (x , a) =

(
yxy−1, b + y . a− (yxy−1) . b

)
.

Consider the groupoid algebra C(Γ) of Γ.

This algebra is isomorphic to the underlying algebra of the
quantum double of the group-algebra of G n ker(∂).
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Enrichments via operator algebras arXiv:1807.09551
Theorem Given any unitary representation V of C(Γ), we have a
unitary representation of the loop braid group on V ⊗ · · · ⊗ V .
It is calculated from the following bikoid.

w =
(
w−1, 0ker(∂)

)
−w . a = (1G ,−w−1 . a) ∈ G n ker(∂)

w and −w . a are interpreted as the 2D holonomies of the tubes
traced by each loop when they move. Aharonov-Bohm phases?

′R −matrix ′ C(Γ)⊗ C(Γ) 3 R =
∑

(z,a),(w ,b)∈Gnker(∂)(
(z , a)

w−→ (w−1zw ,w−1 .a
)
⊗
(
(w , b)

−w.a−−−→ (w , a+b−w−1 .a
)

R satisfies: R12R13R23 = R23R13R12 and R13R23 = R23R13.
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