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The category of manifold and cobordisms (sketch)
Let n ∈ Z+

0 . Define symmmetric monoidal category (n, n + 1)-Cob.

I Objects: closed smooth n-manifolds A,B,...

I Morphisms [M] : A→ B are equivalence classes of diagrams:
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Here M is a smooth (n + 1)-manifold, and
i and j induce a diffeomorphism 〈i , j〉 : A t B → ∂(M).
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Visualization.

Composition of morphisms.
Note: Collars are required to
construct smooth structure.



The category of manifold and cobordisms (sketch)

More precisely, the composition of cobordisms is via pushouts:
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So ([M] : A→ B) • ([N] : B → C ) = ([M tB N] : A→ C ).

Note that smooth structure on M tB N is not uniquely defined.
But it is unique up to diffeomorphism.

The monoidal structure in (n, n + 1)-Cob is induced from the
disjoint union of manifolds / cobordisms.



Topological quantum field theories

Definition (TQFT)

Given a non-negative integer n ∈ Z+
0 ,

a Topological Quantum Field Theory (TQFT)
is a symmetric monoidal functor:

F : (n, n + 1)-Cob→ Vect.



Plan of the talk

In this talk I will:

1. Recall Quinn’s finite total homotopy TQFT

F (s)
R : (n, n + 1)-Cob→ Vect, s ∈ C

Where R is a “homotopically finite space”, a parameter.

Cf. Frank Quinn. Lectures on axiomatic topological quantum
field theory. In Geometry and quantum field theory. (1995)

2. Explain the combinatorial calculation of F (s)
R .

For R classifying space of a homotopy finite strict ω-groupoid
(represented by a crossed complex of groupoids).

3. Explain the construction of a once-extended version of F (s)
R .



Homotopy finite spaces (or simplicial sets)

Definition (Homotopy finite space)

A space X (or simplicial set X ) is called homotopy finite (HF) if:

I X has only a finite number of path components.

I Given a path-component K of X , exists n ∈ N such that:

I πi (K ) is trivial, if i > n.

I πi (K ) finite, if i = 1, . . . , n.

Equivalently, X has finitely many path-components, and finitely
many non-trivial homotopy groups, all of which are finite.

Definition (n-type)

Let n ∈ N. A path-connected space X is called an n-type if:

1. X is homeomorphic to a CW-complex.

2. πi (X ) = 0, if i > n.

An n-type is HF if all of its homotopy groups are finite.



Classifying spaces of groups, etc

Example

Let G be a finite group. Classifying space BG is path-connected.
Also:

I π1(BG , ∗) ∼= G , and

I πi (BG , ∗) = 0, if i ≥ 2.

So BG is a finite 1-type. So BG is a HF space.

More generally, if G is a finite groupoid, or finite 2-group, then
classifying space BG is homotopy finite

More examples later.



The homotopy content of a homotopy finite space

Definition (Homotopy content)

If X is HF, the homotopy content of X is:

χπ(X ) =
∑

K∈π0(X )

|π2(K )| |π4(K )| |π6(K )| . . .
|π1(K )| |π3(K )| |π5(K )| . . .

∈ Q.

Here π0(X ) is the set of path-components of X .

Example (Classifying spaces of finite groups)

If G is a finite group then χπ(BG ) = 1/|G |.

The homotopy content first appeared (I think) in:
Frank Quinn. Lectures on axiomatic topological quantum field
theory. In Geometry and quantum field theory. (1995)

John C. Baez and James Dolan. From finite sets to Feynman
diagrams. In Mathematics unlimited-2001 and beyond (2001)



Some properties HF spaces and their homotopy content

I If X and Y are HF, then so are X × Y and X t Y , and:

χπ(X × Y ) = χπ(X )× χπ(Y ),

χπ(X t Y ) = χπ(X ) + χπ(Y ).

I Let p : E → B be a fibration of HF spaces. Let b ∈ B.
The fibre Fb := p−1(b) is HF.

Moreover if B is path-connected then:

χπ(E ) = χπ(B)× χπ(Fb).

Cf. John C. Baez and James Dolan. From finite sets to Feynman
diagrams. In Mathematics unlimited-2001 and beyond (2001)

Imma Gálvez-Carrillo, Joachim Kock, Andrew Tonks: Homotopy
linear algebra. P ROY SOC EDINB A. (2018).



Function spaces and homotopy finite spaces

Theorem (Quinn)

Let M be a compact CW-complex. Let R is HF space.
Then the function space below is HF:

TOP(M,R) = {f : M →R | f is continuous}.

In particular if M is a compact smooth manifold.

Note that TOP(M,R) is given the k-ification of the
compact-open topology on the space of maps M →R.

Topology on TOP(M,R) is given by the sup distance if R is a
locally-finite CW-complex (thus R is a metric space).



Quinn’s (finite total homotopy) TQFT
Let R be a HF-space. Let s ∈ C.

Functor: F (s)
R : (n, n + 1)-Cob→ Vect.

I If A is an n-manifold then:

F (s)
R (A) = C

(
π0(TOP(A,R))

)
.

I Matrix elements assigned to cobordisms A
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B
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〈
[f ]
∣∣∣F (s)

R (M)
∣∣∣[f ′]〉 := χπ

{
H : M →R :
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commutes

×
(
χπ(PCf (TOP(A,R)))

)s (
χπ(PCf ′(TOP(B,R)))

)1−s
.

Here PCx(X ) is the path component of x in space X .



Discussion: Quinn finite total homotopy TQFT

Note: Quinn TQFT F (s)
R can be twisted by classes in Hn+1(R,U(1)).

I Let G be a finite group. Let R be classifying space of G .

Then F (s)
R coincides with Dijkgraaf-Witten TQFT.

Explicitly calculable. Related to topological gauge theory.

Related to Kitaev quantum double model.

I Let G be a finite 2 group. Let R be classifying space of G.

F (s)
R coincides with (twisted) Yetter TQFT ( / Porter).

Explicitly calculable. Related to topological higher gauge theory.

Related to higher Kitaev models formulated with 2-groups.

This generalises.



Discussion: Quinn finite total homotopy TQFT

Theorem (Ellis)

Any connected HF space is homotopic to a space of the form
|W (G )|, where G is a finite simplicial group.

Graham Ellis: Spaces with finitely many non-trivial homotopy
groups all of which are finite. Topology (1997)

Let R = |W (G )|, and M : A→ B a triangulated cobordism.

Can compute F (s)
R (M : A→ B) using simplicial homotopy tools.

Quinn TQFT F (s)
R : (n, n + 1)-Cob→ Vect thus is combinatorial.

We will see the case when R is the classifying space of a strict
omega-groupoid.

This includes the case of classifying spaces of 2-groups, relevant
for higher gauge theory.



Crossed modules of groups (as models for 2-types)
Definition (Crossed module)

A crossed module G = (∂ : E → G , .) is given by:

I A group map (i.e. a homomorphism) ∂ : E → G .

I A left action . of G on E , by automorphisms,

such that the following conditions (Peiffer equations) hold:

Peiffer 1 ∂(g . e) = g∂(e)g−1, where g ∈ G , e ∈ E ;

Peiffer 2 ∂(e) . f = efe−1, where e, f ∈ E .

Example
E a group, G = Aut(E ).

We have a crossed module
(
E

Ad−−→ Aut(E ), eval
)
.

Theorem (Spencer)

Category of crossed modules is equivalent to category of 2-groups.

Theorem (Whitehead-MacLane)

Homotopy category of crossed modules is equivalent to homotopy
category of 2-types. (Spaces X with πi (X ) = 0 if i ≥ 3.)



Crossed complexes (of groupoids)

A crossed complex is given by a complex of groupoids over set C0

C := . . .
∂−→ Cn

∂−→ Cn−1
∂−→ . . . ...

∂−→ C3
∂−→ C2

∂−→ C1

s
⇒
t
C0

(hence all groupoids have object set C0). Such that:

I All groupoids for Ci , i ≥ 2 are totally disconnected.

I All boundary maps are the identity over the object C0.

I We have an action of C1 on all groupoids Ci , i ≥ 2

I All boundary maps preserve actions.

I Peiffer 1: If x
g−→ y ∈ C1 and K ∈ Cn(y , y) then (for k ≥ 2):

∂(g . K ) = g∂(K )g−1

I Peiffer 2: If K , L ∈ C2(y , y) then ∂(K ) . L = KLK−1

I The action of ∂(C2) is trivial on all groupoids Ci for i ≥ 3.

I Ci is abelian if i ≥ 3.



Monoidal closed category Crs

The category Crs of crossed complexes is equivalent to the
category of strict omega-groupoids (Brown–Higgins).

Also: Crs is a monoidal closed category (Brown–Higgins).

I Given A and B we can form tensor product A⊗ B.

I Given A and B we can form “function space” CRS(A,B).

I Natural equivalence Crs(A⊗ B, C) ∼= Crs(A,CRS(B, C)).

I Given A and B, π1(CRS(A,B)) is groupoid of maps A → B
and (2-fold homotopy classes of) homotopies between them.

Example

Let G and H be finite groups, seen as a crossed complexes

I G ⊗ H is the free product G ∗ H.
I CRS(G ,H) is the groupoid with

I objects maps f : G → H.

I morphisms f
h−→ f ′ are elements of H conjugating f into f ′.



Fundamental crossed complexes of CW-complexes

Theorem (Brown-Higgins)

Let X be a CW-complex. Then the sequence of groupoids

Π(X ) := . . .
∂−→ πn(X n,X n−1,X 0)

∂−→ πn−1(X n−1,X n−2,X 0)

∂−→ . . . ...
∂−→ π2(X 2,X 1,X 0)

∂−→ π1(X 1,X 0)
s
⇒
t
X0.

is a totally free crossed complex with object set X0.



Classifying spaces of Crossed complexes

Definition (Nerve and classifying space of crossed complexes)

The nerve NC of the crossed complex

C = . . .
∂−→ Cn

∂−→ Cn−1
∂−→ . . . ...

∂−→ C2
∂−→ C1

s
⇒
t
C0

is the simplicial set NC such that

(NC)n = homCrs

(
Π(∆(n)), C

)
.

The classifying space of C is BC := |NC|.

Theorem (Brown-Higgins)

The homotopy groups of BC are the homology groups of C.

So if C is finite then BC is a HF space.



C-colourings (C a crossed complex)
Let M be a manifold with triangulation t. Consider:

C = . . .
∂−→ Cn

∂−→ Cn−1
∂−→ . . . ...

∂−→ C2
∂−→ C1

s
⇒
t
C0

Maps f : Π(Mt)→ C are in 1-to-1 correspondence with C-colorings:
I a map f0 : Vertices(Mt)→ C0

I a map f1 : edges(Mt)→ C1, looking like:

f0(v0)
f1(γ)−−−→ f0(v1) at each edge v0

γ−→ v1 of Mt

I a map f2 : triangles(Mt)→ C2, looking like:

f0(v0)

∂(f2(∆123))f1(γ02) ##

f1(γ01) //

f2(∆012)

f0(v1)

f1(γ12){{
f0(v2)

at each triangle v0

γ02
  

γ01 //

∆012

v1

γ12
~~

v2

Rule: Colour of an n-face must fit with colour of its boundary.



Calculation of Quinn’s F (s)
R for R = |N (C)|.

Let C be a pointed homotopically finite crossed complex
Hence R := |NC| is a homotopically finite space.

Theorem ( /Porter (following Brown-Higgins))

Let A be a closed n-manifold with a triangulation t. Then

F (s)
R (A) ∼= C(π0(CRS(Π(At), C)).

Here CRS( , ) is internal-hom in the cat. of crossed complexes.

In particular a basis of F (s)
R (A) consists of homotopy classes of

crossed complex maps f : Π(At)→ C,
considered up to homotopy / pseudonatural equivalence.

Note CRS(Π(At), C) is the crossed complexes of all maps f : Π(At)→ C
and their homotopies / natural transformations of all orders.



Calculation of Quinn F (s)
R for R = |N (C)|.

Consider a cobordism A
i ))

B
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Consider a triangulation t of of M extending triangulations t of A
and B.

Theorem ( /Porter (following Brown-Higgins))

Given f : Π(At)→ C and f ′ : Π(At)→ C

〈
[f ]
∣∣∣F (s)

R (M)
∣∣∣[f ′]〉 = #

{
H : Π(Mt)→ C :

Π(At) i
))

f

  

Π(Bt)

juu

f ′

~~

Π(Mt)

H
��
C

}

commutes

×factors depending only on number of simplices of At ,Bt ,Mt ; and C.



Extended cobordisms
Let (n, n + 1, n + 2)-Cob be the bicategory with:
I Objects n-dimensional closed smooth manifolds A,B, . . .
I 1-morphisms M : A→ B are (n, n + 1)-cobordisms

(no equivalence relation is applied now):

A
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B
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.

I 2-morphisms K : M =⇒ N are
(n, n + 1, n + 2)-extended-cobordisms (up to equivalence):

A
i1 //

ιA0
��

M

iN
��

B
j1oo

ιB0
��

A× [0, 1] iE // K B × [0, 1]iWoo

A

ιA1

OO

i2
// N

iS

OO

B
j2

oo

ιB1

OO



Extended cobordisms

Horizontal and vertical composition is performed via pushouts.
(As before, we need collars to construct smooth structures.)



(Once)-Entended TQFTs
A once-extended TQFT is a symmetric monoidal bifunctor:

F : (n, n + 1, n + 2)-Cob→ Alg.

Here Alg is some “algebraic” symmetric monoidal bicategory.

In this talk we will take:
• Alg to be the bicategory Mor with:

I objects algebras A,B,...

I with 1-morphisms M : A → B being (A,B)-bimodules M.

I Composition A M−→ B N−→ C is (A,B)-bimodule M⊗B N .

I 2-morphisms (A M−→ B) =⇒ (A M′
−−→ B) are bimodule maps.

• We will also consider Alg to be the bicategory Prof with

I objects homotopy finite groupoids G, H,

I 1-morphisms G → H are (enriched) profunctors, i.e. functors
Gop ×H → Vect. Composition is via coends.

I 2-Morphisms are natural transformations of functors.



Once-extended version of Quinn TQFT
Let R be a HF space. We have a once-extended TQFT

Q̂R : (n, n + 1, n + 2)-Cob→ Prof .

I If A is an n manifold then

Q̂R(A) = π1(TOP(A,R),TOP(A,R)).

I A cobordism:

A
i ))

B
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.

is sent to the profunctor:

Q̂R(M) : Q̂R(A)op × Q̂R(B)→ Vect

obtained from the path-space fibration:

〈i∗, j∗〉 : TOP(M,R)→ TOP(A,R)× TOP(B,R).

As per Quinn TQFT from here.



Decorated manifolds

Let R be a homotopy finite space.

Definition (Decorated manifold)

A decorated manifold A = (A, xA) is a manifold A together with a
finite subset xA of TOP(A,R), containing at least one element for
each path component of TOP(A,R).

We have bicategory (n, n + 1, n + 2)-Cob of decorated manifolds,
(undecorated) cobordisms and (undecorated) extended cobordism.



Finitary once-extended version of Quinn TQFT

Let R be a homotopy finite space, n a non-negative integer.;

Theorem (Finitary extended Quinn TQFT)

We have bifunctor:

QR : (n, n + 1, n + 2)-Cob→ Prof ,

sending A = (A, xA) to π1(TOP(A,R), xA).

Note 1: The groupoid QR(A, xA) is finite.
Previously the groupoid: QR(A) = π1(TOP(A,R),TOP(A,R))
had an uncountable number of objects.

Note 2: Let A be an n-manifold.
If xA and yA are different decorations of A then

QR
(
(A, xA)

A×I−−→ (A, yA)
)
.

gives a canonical profunctor QR
(
(A, xA)

)
→ QR

(
(A, yA)

)
.



Morita valued extended version of Quinn TQFT

Let R be a homotopy finite space and n ∈ Z+
0 .

Theorem (Morita valued once-extended Quinn TQFT)

The bifunctor:

QR : (n, n + 1, n + 2)-Cob→ Prof ,

sending A = (A, xA) to π1(TOP(A,R), xA),

“linearises” to a bifunctor, denoted:

QMor
R : (n, n + 1, n + 2)-Cob→Mor,

sending A = (A, xA) to groupoid algebra C(π1(TOP(A,R), xA)).



The case of crossed complexes / strict omega-groupoids

Suppose that R = BC , where C is a finite crossed complex.

Theorem
If A has a triangulation At then A is naturally decorated. Moreover:

QR(At) = π1

(
CRS(Π(At), C)

)
,

QMor
R (At) = C

(
π1(CRS(Π(At), C))

)
.

Note: π1

(
CRS(Π(At), C))

)
is groupoid of crossed complex maps

Π(At)→ C, and (2-fold homotopy classes of) homotopies between
them.

This permits the computation of once-extended Quinn TQFT QR
and QMor

R if R is the classifying space of a finite crossed complex.



Computations QMor
R ,QR : (n, n + 1, n + 2)-Cob→ Alg

Consider n-manifolds A to come with a (singular) triangulation,
a homeomorphism |S | → A where S is a simplicial set.

This gives rise to once-extended TQFTs:

QMor
R ,QR : (n, n + 1, n + 2)-Cob→ Alg

Example

Let G be a finite group. R = BG . Let A be a pointed n-manifold.

QR(A) = hom(π1(A),G )//G

Action groupoid of action of G on set of morphisms π1(A)→ G .

= groupoid of G -connections on A and their gauge transformations

Cf. Jeffrey Morton. Cohomological twisting of 2-linearization and
extended TQFT. J. Homotopy Relat. Struct. (2015).



Computations QMor
R ,QR : (n, n + 1, n + 2)-Cob→ Alg

Let G be a finite group. R = BG .

I n = 0, then QMor
R (.) = C(G )

I n = 1, then QMor
R (S1) is the quantum double of C(G ).

I n = 2, then QMor
R (S2) = C.

I n = 2, then QMor
R (S1 × S1) is the groupoid algebra of the

action groupoid of G acting on {(a, b) ∈ G × G | ab = ba} by
simultaneous conjugation.

I ... All easy to compute.

In particular this gives new proof that there exists a
(1,2,3)-extended TQFT sending S1 to the quantum double of G .



Computations QMor
R ,QR : (n, n + 1, n + 2)-Cob→ Alg

Example

Let G = (∂ : E → G , .) be a finite crossed module. R = BG .

QR(S1) is the groupoid with objects: g ∈ G .
Morphisms in QR(S1) are equivalence classes of arrows like:

g
[(h,e)]−−−−→ ∂(e)hgh−1, g , h ∈ G , e ∈ E .

= groupoid of G-2-connections on S1, with morphisms equivalence
classes of gauge transformation (up to 2-gauge transformations)
Latter is always the case.

Cf. Alex Bullivant and Clement Delcamp. Tube algebras,
excitations statistics and compactification in gauge models of
topological phases. JHEP (2019)
Alex Bullivant and Clement Delcamp. Excitations in strict 2-group
higher gauge models of topological phases. JHEP (2020).



Thanks!
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