## Discrete Hamitonian models for $3+1$ D topological phases derived from higher gauge theory

Seminar, Department of Physics of the University of Oxford

```
24th April 2019
```

João Faria Martins (University of Leeds)

LEVERHULME


TRUST
Partially funded by the Leverhulme Trust research project grant: RPG-2018-029: "Emergent Physics From Lattice Models of Higher Gauge Theory"

## (Discrete) gauge theory and holonomy

- Let $M$ be a manifold.
- A path in $M$ is a piecewise smooth map $\gamma:[0,1] \rightarrow M$. We consider paths up to homotopy, relative to the end-points.


Paths $\gamma_{1}$ and $\gamma_{2}$ are homotopic.

- Denote paths as $(x \xrightarrow{\gamma} y), x$ and $y$ are initial and end-points.
- Paths $(x \xrightarrow{\gamma} y)$ and $\left(y \xrightarrow{\gamma^{\prime}} z\right)$ can be concatenated:

$$
(x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)=\left(x \xrightarrow{\gamma \gamma^{\prime}} z\right) .
$$



## Gauge Theory and Holonomy

Let $G$ be a group ( $G$ will be finite throughout the talk). Given a principal $G$-bundle $P \rightarrow M$ - i.e. a gauge field -, we have the parallel transport (a.k.a. holonomy) of $P$ :

$$
\begin{aligned}
\mathcal{F}:\{\text { Paths } \quad \text { in } M\} & \rightarrow G \\
& \gamma \longmapsto \operatorname{hol}^{1}(\gamma)=g_{\gamma} \in G
\end{aligned}
$$

Recall parallel transport preserves concatenation of paths:

$$
\mathcal{F}\left((x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)\right)=\mathcal{F}(x \xrightarrow{\gamma} y) \mathcal{F}\left(y \xrightarrow{\gamma^{\prime}} z\right)
$$



NB: must specify elements $p_{v} \in F_{v}$, the fibre of $P$ at each $v \in M$. If $G$ is a Lie group we need $G$-connection $A$. Locally $A \in \Omega^{1}(M, \mathfrak{g})$.

## Gauge Theory and Holonomy

Conversely, $G$-connections can be defined from their holonomy.
Since $G$ is finite, and $M$ compact, to reconstruct the $G$-connection we only need to know the holonomy along a finite number of paths. The theory of gauge fields becomes combinatorial / discrete.
Combinatorially, a G-connection over $M$ looks like:


$$
\begin{aligned}
& a, b, c \\
& d, e, f, g \in G
\end{aligned}
$$

Labels on edges denote holonomy along them. Flatness conditions are satisfied on triangles: the holonomy around each triangle is trivial.

The holonomy around a more complicated polygon (plaquette) should also be trivial.


$$
a b c=1_{G}
$$

## Discrete $G$-gauge fields: $G$ a finite group

- Let $M$ be a manifold with a CW-decomposition $L$ into 'cells':
vertices $v, v^{\prime}, v^{\prime \prime} \in L^{0}$, edges $t, t^{\prime}, t^{\prime \prime} \in L^{1}$, plaquettes $P, P^{\prime} \in L^{2}$, blobs $b, b^{\prime} \in L^{3}, \ldots$

(The interior of each plaquette $P$ should be an open disk.)
- An edge $t=\left(v \xrightarrow{t} v^{\prime \prime}\right) \in L^{1}$ is assigned $g_{t}=\mathcal{F}\left(v \xrightarrow{t} v^{\prime \prime}\right) \in G$, the holonomy along $t$.
Multiplicativity of holonomy lets us know holonomy along paths homotopic to paths obtained from concatenating edges.
- Each vertex $v \in L^{0}$ carries a copy of $G$ (to be the group of gauge operators supported in $v$ ).
- Each plaquette $P \in L^{2}$ imposes a flatness condition on the colours of the edges around $P$.


## Kitaev Quantum Double Model for topological phases

Define: a) Hilbert space $V(M, L)=\mathbb{C}\left\{\right.$ Functions $\left.\mathcal{F}: L^{1} \rightarrow G\right\}$. (One copy of $G$ for each edge $t \in L^{1}$.)
b) a group $T(M, L)=\prod_{v \in L^{0}} G$ of gauge operators $U: L^{0} \rightarrow G$. (One copy of $G$ for each vertex $v \in L^{0}$.)
Given $v \in L^{0}, g \in G$, put $U_{v}^{g} \in T(M, L)$ to be the gauge operator (called vertex operator) such that:

$$
U_{v}^{g}(x)=\left\{\begin{array}{l}
g, \text { if } x=v \\
1_{G}, \text { otherwise }
\end{array}\right.
$$

Left-action of $T(M, L)$ on $V(M, L)$, by gauge transformations:
Let $\mathcal{F} \in V(M, L)$ and $U \in T(M, L)$, define:

$$
\begin{gathered}
(U . \mathcal{F})(x \xrightarrow{t} y)=U(x) \mathcal{F}(x \xrightarrow{t} y) U(y)^{-1} . \\
\text { So }\left(U_{v}^{g} . \mathcal{F}\right)(x \xrightarrow{t} y)=\left\{\begin{array}{l}
g \mathcal{F}((x \xrightarrow{t} y)) ; v=x, v \neq y, \\
\mathcal{F}((x \xrightarrow{t} y)) g^{-1} ; v=y, v \neq x, \\
g \mathcal{F}((x \xrightarrow{t} y)) g^{-1} ; v=x=y .
\end{array}\right.
\end{gathered}
$$

$U_{g}^{v}: V(M, L) \rightarrow V(M, L)$ is unitary and called a vertex operator.

## Plaquette operators

- Each plaquette $P$ must be assigned a base-point $v_{P}$.
- A plaquette $P \in L^{2}$ attaches to $M^{1}$ (the union of all 1-cells) along a path in $M^{1}$, namely $\partial_{L}(P)=\left(v_{P} \xrightarrow{\partial_{L}(P)} v_{P}\right)$

- Given a plaquette $P$ and $g \in G$, define the plaquette operator:

$$
\mathcal{D}_{P}^{g}(\mathcal{F})=\left\{\begin{array}{l}
\mathcal{F}, \text { if } \mathcal{F}\left(v_{P} \xrightarrow{\partial_{L}(P)} v_{P}\right)=g \\
0, \text { otherwise }
\end{array}\right.
$$

- Plaquette operator $\mathcal{D}_{P}^{g}: V(M, L) \rightarrow V(M, L)$ is self-adjoint.


## The Kitaev Quantum Double Model (quant-ph/9707021)

(Slightly different language, as in 1702.00868 [math-ph])
$M$ with CW-decomposition $L . V(M, L)=\mathbb{C}\left\{\mathcal{F}: L^{1} \rightarrow G\right\}$.
Consider the Hamiltonian $H: V(M, L) \rightarrow V(L, M)$ :

$$
H=-\sum_{v \in L^{0}} \frac{1}{|G|} \sum_{g \in G} U_{v}^{g}-\sum_{P \in L^{2}} \mathcal{D}_{P}^{1_{G}}=-\sum_{v \in L^{0}} \mathcal{A}_{v}-\sum_{P \in L^{2}} \mathcal{D}_{P}^{1_{G}}
$$

All the $\mathcal{A}_{v}$ and $\mathcal{D}_{P}^{1 G}$ are commuting, self-adjoint, projectors.
$\mathcal{A}_{v}$ imposes gauge-invariance at $v \in L^{0}$.
$\mathcal{D}_{P}^{16}$ imposes 'flatness' around the boundary of $P \in L^{2}$.
Topological excitations are modules over the algebra $\left\langle\left\{U_{v}^{g}, \mathcal{D}_{P}^{h}\right\}\right\rangle$.
Theorem: The ground state $G S(M, L)$ of $H$ is:
$G S(M, L)=\left\{\begin{array}{l|l}\mathcal{F} \in V(M, L) & \begin{array}{c}U_{v}^{g} \triangleright \mathcal{F}=\mathcal{F}, \text { for all } g \in G, v \in L^{0} \\ \mathcal{D}_{P}^{1 G} \mathcal{F}=\mathcal{F}, \text { for all } P \in L^{2}\end{array}\end{array}\right\}$
$G S(M, L) \cong \mathbb{C}\left\{\right.$ Maps $\left.M \rightarrow B_{G}\right\} /$ homotopy, canonically.
Here $B_{G}$ is the classifying space of $G$.
Hence $G S(M, L)=V(M)$ does not depend on $L$ and only on $M$.

## 'Extension' of Kitaev model to Higher Gauge Theory

- Higher gauge theory is a higher order version of gauge theory.
- Higher gauge theory formalises non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.
- Non-abelian holonomy along surfaces is multiplicative with respect to the several ways we can concatenate surfaces.
(This is why higher category theory arises here.)
- We need a higher order version of a group: called a "2-group".
- 2-groups are equivalent to crossed modules.

A crossed module of groups $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- a group map $\partial: E \rightarrow G$,
- and a left-action of $G$ on $E$, by automorphisms, such that:

1. $\partial(g \triangleright e)=g \partial(e) g^{-1}$, if $g \in G$ and $e \in E$;
2. $\partial(e) \triangleright e^{\prime}=e e^{\prime} e^{-1}$, if $e, e^{\prime} \in E$.

Crossed modules will mostly be finite throughout the talk.

## Examples of crossed modules of groups $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$

1. $G$ a group; $A$ and abelian group.

Consider a left-action $\triangleright$ of $G$ on $A$, by automorphisms.
We have a crossed module $\mathcal{G}=\left(A \xrightarrow{a \in A \mapsto 1_{G}} G, \triangleright\right)$.
In the general example above we can for instance put:

- $G=\{ \pm 1, \times\} . A=\left(\mathbb{Z}_{3},+\right) . g \triangleright a=\operatorname{ga}(\bmod 3)$.
- $G=\mathrm{GL}\left(\mathbb{Z}_{p}, n\right)$; i.e. $n \times n$ invertible matrices in $\mathbb{Z}_{p}$. $A=\left(\mathbb{Z}_{p}\right)^{n}$. Here $p$ is a prime.

2. Given a group $H$, put $\mathcal{G}=\left(H \xrightarrow{g \mapsto \operatorname{Ad}_{g}} \operatorname{Aut}(H)\right)$. Here $\operatorname{Ad}_{g}(x)=g \times g^{-1}$.
$\operatorname{Aut}(H)$ is the automorphism group of $H$.

## 2-dimensional (i.e. surface) holonomy functors

Given $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ we can define "bigons" in $\mathcal{G}$.


These compose horizontally and vertically:


## 2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in $\mathcal{G}$ are: associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

does not depend on the order whereby it is performed. As a consequence evaluations of more complicated diagrams like:

do not depend on the order whereby we apply compositions.
A very general result is in 1702.00868 [math-ph]
This leads to a notion of non-abelian multiplication along surfaces.
This notion underpins surface-holonomy in higher gauge theory.

## 2-dimensional holonomy

A geometric bigon on in a manifold $M$ is given by:
Two paths $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point.
A homotopy (i.e. a 'surface') $\Sigma:[0,1]^{2} \rightarrow M$, connecting $\gamma$ and $\gamma^{\prime}$.
$\Sigma$ is considered up to homotopy relative to $\partial\left([0,1]^{2}\right)$.
Geometric bigons are represented as:


Geometric bigons can be concatenated horizontally and vertically.

- Definition Let $M$ be a manifold; $\mathcal{G}$ a crossed module. A 2-dimensional holonomy (i.e. a higher gauge field) is a map:

$$
\{\text { Geometric bigons in } M\} \xrightarrow{\mathcal{F}}\{\text { Bigons in } \mathcal{G}\}
$$

Preserving horizontal and vertical compositions.
The underlying $\mathcal{G}$-2-bundle can be reconstructed from $\mathcal{F}$.

## 2D holonomy along $\Sigma$



Note: for Lie crossed modules $(\partial: E \rightarrow G, \triangleright), 2$-dimensional holonomies arise from pairs $A \in \Omega^{1}(M, \mathfrak{g})$ and $B \in \Omega^{2}(M, \mathfrak{e})$, with $\partial(B)=$ Curv $_{A}=d A+\frac{1}{2}[A, A]$.

The HGT analogue of Kitaev quantum double model
Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let $M$ be a compact manifold, possibly with boundary. Let $L=\left(L^{0}, L^{1}, L^{2}, L^{3} \ldots\right)$ be a CW-decomposition of $M$. In HGT 3-cells $b \in L^{3}$ (called blobs) have an important role.
A discrete 2-connection $\mathcal{F}$ is given by an assignment:

$$
\gamma \in L^{1} \mapsto g_{\gamma} \in G \text { and } P \in L^{2} \mapsto e_{P} \in E
$$

satisfying the fake-flatness condition, namely:
If we have a configuration like:
Then:


## The Hilbert space for the higher Kitaev model

- $M$ a compact manifold, with a CW-decomposition $L$.
- We put $\Phi(M, L)=\{$ Discrete $2-$ connections $\mathcal{F}\}$.
- And $V(M, L)=\mathbb{C} \Phi(M, L)$. Hilbert space for discrete HGT.
- The group of gauge operators puts together gauge transformations along vertices and along edges:

$$
\begin{aligned}
& T(M, L)=\left(\prod_{v \in L^{0}} G\right) \ltimes\left(\prod_{\sigma(t) \xrightarrow{t} \tau(t) \in L^{1}} E\right) \\
& \quad=\left\{\text { Functions } L^{0} \rightarrow G\right\} \ltimes\left\{\text { Functions } L^{1} \rightarrow E\right\}
\end{aligned}
$$

Where $U \in \prod_{v \in L^{0}} G$ left-acts in $\eta \in \prod_{t \in L^{1}} E$ as:

$$
(U . \eta)(\sigma(t) \xrightarrow{t} \tau(t))=U(\sigma(t)) \triangleright \eta((\sigma(t) \xrightarrow{t} \tau(t)))
$$

For $S^{1}$ with one vertex and one edge $T\left(S^{1}, L\right)=G \ltimes E$.

## Discrete surface holonomy. arXiv:1702.00868

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let $\mathcal{F} \in \Phi(M, L)$ be a discrete 2-connection.

- Theorem Let $\Sigma$ be a 2-sphere cellularly embedded in $M$, $v \in \Sigma$, an 'initial point'. We have a surface-holonomy: $H o l_{v}^{2}(\mathcal{F}, \Sigma) \in \operatorname{ker}(\partial) \subset E$.
This surface-holonomy depends only on the starting point $v \in \Sigma$, and not in the way whereby we combine 2-cells.

For example, consider the discrete 2-connection on the tetrahedron $\Sigma$, below, based on the bottom left corner $v_{0}$.


Then $\operatorname{Hol}_{v_{0}}^{2}(\mathcal{F}, \Sigma)=e_{1} e_{2}^{-1} e_{3}^{-1} g_{01} \triangleright e_{4}$

## Action of the group of gauge operators

- We have an action of the group of gauge operators $T(M, L)$ on $\Phi(M, L)$, preserving 2 D holonomy, up to acting by $g \in G$.

Given $t \in L^{1}$, and $e \in E$, let $U_{t}^{e}$ be the unique gauge operator supported in $t$ with $U_{t}^{e}(t)=e$. (Called an edge gauge spike.)

Given $v \in L^{0}$, and $g \in G$, let $U_{t}^{e}$ be the unique gauge operator supported in $v$ with $U_{v}^{g}(v)=g$. (Called a vertex gauge spike.)


## Action of the group of gauge operators

Some examples of vertex gauge transformations:


## Action of the group of gauge operators

Some examples of edge gauge transformations:


## Vertex, edge and blob operators

Let $\mathcal{G}=(\partial: E \rightarrow G)$ be a crossed module.

- All vertex operators $U_{V}^{g}: V(M, L) \rightarrow V(M, L)$ are unitary.
- All edge operators $U_{t}^{e}: V(M, L) \rightarrow V(M, L)$ are unitary.
- Given a 3-cell $b$, a blob, let $\partial b \subset M$ be its boundary. Hence $\partial b$ is a 2 -sphere cellularly embedded in $M$. The blob operator $\mathcal{C}_{b}^{k}$ is defined as (here $k \in \operatorname{ker}(\partial)$ )

$$
\mathcal{C}_{b}^{k}(\mathcal{F})=\left\{\begin{array}{l}
\mathcal{F}, \text { if } 2 h o l(\mathcal{F}, \partial b)=k \\
0, \text { otherwise }
\end{array}\right.
$$

- Clearly $\mathcal{C}_{b}^{k}: V(M, L) \rightarrow V(M, L)$ is self-adjoint.


## The higher gauge theory Kitaev model

$V(M, L)=\mathbb{C}\{$ Discrete $2-$ connections $\mathcal{F}\}$.
Hamiltonian $H: V(M, L) \rightarrow V(M, L)$.

$$
\begin{gathered}
H=-\sum_{v \in L^{0}} \frac{1}{|G|} \sum_{g \in G} \hat{U}_{v}^{g}-\sum_{t \in L^{1}} \frac{1}{|E|} \sum_{e \in E} \hat{U}_{t}^{e}-\sum_{b \in L^{3}} \mathcal{C}_{b}^{1 E} . \\
H=-\sum_{v \in L^{0}} \mathcal{A}_{v}-\sum_{t \in L^{1}} \mathcal{B}_{t}-\sum_{b \in L^{3}} \mathcal{C}_{b}^{1 E} .
\end{gathered}
$$

All operator in the last sum are commuting self-adjoint projectors.
$\mathcal{C}_{b}^{1}{ }^{1}$ forces the surface-holonomy of a discrete 2-connection $\mathcal{F}$ to be trivial along the boundary of the 3 -cell $b$.

Algebra generated by the $U_{t}^{g}, U_{t}^{e}$ and $C_{b}^{k}$ is our proposal for a local operator algebra $\mathcal{A}$. Relations are in arXiv:1702.00868. Physically relevant (i.e. topological) excitations are module over $\mathcal{A}$.

## Ground state degeneracy of higher Kitaev model

Theorem The ground state of $H: V(M, L) \rightarrow V(M, L)$ is

$$
\begin{aligned}
G S(M, L) & =\left\{\begin{array}{l|l}
\mathcal{F} \in V(M, L) & \begin{array}{c}
U_{v}^{g} \mathcal{F}=\mathcal{F}, \text { for all } v \in L_{0}, g \in G \\
U_{t}^{e} \mathcal{F}=\mathcal{F}, \text { for all } t \in L_{1}, e \in E \\
\mathcal{C}_{b}^{1} \mathcal{F}=\mathcal{F}, \text { for all } b \in L_{3}
\end{array}
\end{array}\right\} \\
& \cong \mathbb{C}\left\{\text { Maps } M \rightarrow B_{\mathcal{G}\}}\right\} \text { /Homotopy, canonically } .
\end{aligned}
$$

Hence $G(M, L)=V(L)$ depends only on $M$ and not on $L$.
Here $B_{\mathcal{G}}$ is the classifying space of the crossed module $\mathcal{G}$.

## Classifying space $B_{\mathcal{G}}$ of a crossed module $\mathcal{G}$

As the geometric realisation of a simplicial set $B_{\mathcal{G}}$ has:

- one 0 -simplex $\{*\}$
- One 1-simplex $* \xrightarrow{g} *$ for each $g \in G$.
- 2-simplices have the form (where $g, h \in G$ and $e \in E$ ):


Plaquette $P$ is based at bottom left vertex, and attaches clockwise.

- 3-simplices have the form (where $e_{1} e_{2}^{-1} e_{3}^{-1} g_{01} \triangleright e_{4}=1_{G}$ ):

$\partial_{\mathcal{G}}\left(e_{1}\right)=g_{01} g_{13}\left(g_{03}\right)^{-1} \quad \partial_{\mathcal{G}}\left(e_{4}\right)=g_{12} g_{23}\left(g_{13}\right)^{-1} \quad \partial_{\mathcal{G}}\left(e_{2}\right)=g_{02} g_{23}\left(g_{03}\right)^{-1} \quad \partial_{\mathcal{G}}\left(e_{3}\right)=g_{01} g_{12}\left(g_{02}\right)^{-1}$
- The $n$-simplices are analogous. Colourings of 1 and 2-cells of the $n$-simplex, fake-flat on trianges and flat on tetrahedra,


## References:

- Bullivant A, Martin P, and Faria Martins J: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory, arXiv:1807.09551.
- Bullivant A, Calçada M, Kádár Z, Martin P, and Faria Martins J: Higher lattices, discrete two-dimensional holonomy and topological phases in (3+1) D with higher gauge symmetry, arXiv:1702.00868.
- Bullivant A, Calçada M, Kádár Z, Martin P, and Faria Martins J: Topological phases from higher gauge symmetry in 3+1 dimensions. PHYSICAL REVIEW B 95, 155118 (2017)
- Faria Martins J, Picken R..: Surface Holonomy for Non-Abelian 2-Bundles via Double Groupoids, Advances in Mathematics Volume 226, Issue 4, 1 March 2011, Pages 3309-3366
- Faria Martins J, Porter T : On Yetter's Invariant and an Extension of the Dijkgraaf-Witten Invariant to Categorical Groups, Theory and Application of Categories, Vol. 18, 2007, No. 4, pp 118-150.

