Discrete Hamitonian models for 3+1 D topological phases derived from higher gauge theory

Seminar, Department of Physics of the University of Oxford

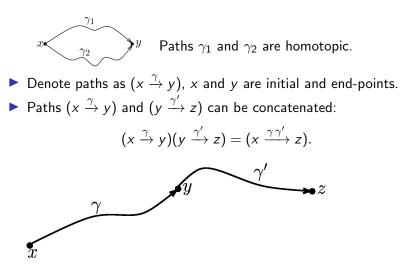
24th April 2019

João Faria Martins (University of Leeds)

Partially funded by the Leverhulme Trust research project grant: RPG-2018-029: "Emergent Physics From Lattice Models of Higher Gauge Theory"

(Discrete) gauge theory and holonomy

- Let *M* be a manifold.
- A path in M is a piecewise smooth map γ: [0,1] → M. We consider paths up to homotopy, relative to the end-points.



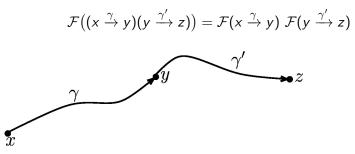
Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk). Given a principal G-bundle $P \rightarrow M$ – i.e. a gauge field –, we have the parallel transport (a.k.a. holonomy) of P:

$$\mathcal{F} \colon \{ \textit{Paths} \ \textit{ in } M \}
ightarrow G$$

 $\gamma \longmapsto \mathrm{hol}^1(\gamma) = g_{\gamma} \in G$

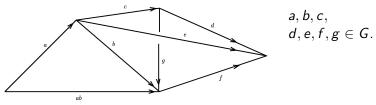
Recall parallel transport preserves concatenation of paths:



NB: must specify elements $p_v \in F_v$, the fibre of P at each $v \in M$. If G is a Lie group we need G-connection A. Locally $A \in \Omega^1(M, \mathfrak{g})$.

Gauge Theory and Holonomy

Conversely, *G*-connections can be defined from their holonomy. Since *G* is finite, and *M* compact, to reconstruct the *G*-connection we only need to know the holonomy along a finite number of paths. The theory of gauge fields becomes combinatorial / discrete. Combinatorially, a *G*-connection over *M* looks like:



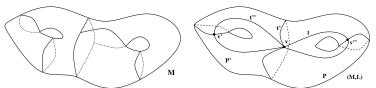
Labels on edges denote holonomy along them. Flatness conditions are satisfied on triangles: the holonomy around each triangle is trivial.

The holonomy around a more complicated polygon (plaquette) should also be trivial.

 $abc = 1_G$

Discrete G-gauge fields: G a finite group

Let M be a manifold with a CW-decomposition L into 'cells': vertices v, v', v" ∈ L⁰, edges t, t', t" ∈ L¹, plaquettes P, P' ∈ L², blobs b, b' ∈ L³, ...



(The interior of each plaquette P should be an open disk.)

▶ An edge $t = (v \xrightarrow{t} v'') \in L^1$ is assigned $g_t = \mathcal{F}(v \xrightarrow{t} v'') \in G$, the holonomy along t.

Multiplicativity of holonomy lets us know holonomy along paths homotopic to paths obtained from concatenating edges.

- ► Each vertex v ∈ L⁰ carries a copy of G (to be the group of gauge operators supported in v).
- ► Each plaquette P ∈ L² imposes a flatness condition on the colours of the edges around P.

Kitaev Quantum Double Model for topological phases

- Define: a) Hilbert space $V(M, L) = \mathbb{C}\{Functions \ \mathcal{F} \colon L^1 \to G\}$. (One copy of G for each edge $t \in L^1$.)
- b) a group $T(M, L) = \prod_{v \in L^0} G$ of gauge operators $U: L^0 \to G$. (One copy of G for each vertex $v \in L^0$.)

Given $v \in L^0$, $g \in G$, put $U_v^g \in T(M, L)$ to be the gauge operator (called vertex operator) such that:

$$U_{v}^{g}(x) = \begin{cases} g, & \text{if } x = v \\ 1_{G}, & \text{otherwise} \end{cases}$$

Left-action of T(M, L) on V(M, L), by gauge transformations: Let $\mathcal{F} \in V(M, L)$ and $U \in T(M, L)$, define:

$$(U.\mathcal{F})(x \xrightarrow{t} y) = U(x)\mathcal{F}(x \xrightarrow{t} y)U(y)^{-1}.$$

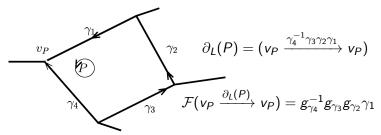
So $(U_v^g.\mathcal{F})(x \xrightarrow{t} y) = \begin{cases} g \mathcal{F}((x \xrightarrow{t} y)); v = x, v \neq y, \\ \mathcal{F}((x \xrightarrow{t} y))g^{-1}; v = y, v \neq x, \\ g \mathcal{F}((x \xrightarrow{t} y))g^{-1}; v = x = y. \end{cases}$

 $U_g^{v} \colon V(M,L) \to V(M,L)$ is unitary and called a vertex operator.

Plaquette operators

- Each plaquette P must be assigned a base-point v_P .
- ▶ A plaquette $P \in L^2$ attaches to M^1 (the union of all 1-cells)

along a path in M^1 , namely $\partial_L(P) = \left(v_P \xrightarrow{\partial_L(P)} v_P\right)$



• Given a plaquette P and $g \in G$, define the plaquette operator:

$$\mathcal{D}_{P}^{g}(\mathcal{F}) = egin{cases} \mathcal{F}, ext{ if } \mathcal{F}(v_{P} \xrightarrow{\partial_{L}(P)} v_{P}) = g \ 0, ext{ otherwise} \end{cases}$$

▶ Plaquette operator \mathcal{D}_P^g : $V(M, L) \to V(M, L)$ is self-adjoint.

The Kitaev Quantum Double Model (quant-ph/9707021)

(Slightly different language, as in 1702.00868 [math-ph]) M with CW-decomposition L. $V(M, L) = \mathbb{C}\{\mathcal{F}: L^1 \to G\}$. Consider the Hamiltonian $H: V(M, L) \to V(L, M)$:

$$H = -\sum_{v \in L^0} \frac{1}{|G|} \sum_{g \in G} U_v^g - \sum_{P \in L^2} \mathcal{D}_P^{1_G} = -\sum_{v \in L^0} \mathcal{A}_v - \sum_{P \in L^2} \mathcal{D}_P^{1_G}$$

All the \mathcal{A}_{v} and $\mathcal{D}_{P}^{1_{G}}$ are commuting, self-adjoint, projectors. \mathcal{A}_{v} imposes gauge-invariance at $v \in L^{0}$. $\mathcal{D}_{P}^{1_{G}}$ imposes 'flatness' around the boundary of $P \in L^{2}$. Topological excitations are modules over the algebra $\langle \{U_{v}^{g}, \mathcal{D}_{P}^{h}\} \rangle$. **Theorem:** The ground state GS(M, L) of H is:

$$GS(M,L) = \left\{ \mathcal{F} \in V(M,L) \middle| \begin{array}{l} U_v^g \triangleright \mathcal{F} = \mathcal{F}, \text{ for all } g \in G, v \in L^0 \\ \mathcal{D}_P^{1_G} \mathcal{F} = \mathcal{F}, \text{ for all } P \in L^2 \end{array} \right\}$$

 $GS(M, L) \cong \mathbb{C}\{Maps \ M \to B_G\}/homotopy$, canonically. Here B_G is the classifying space of G. Hence GS(M, L) = V(M) does not depend on L and only on M.

'Extension' of Kitaev model to Higher Gauge Theory

- Higher gauge theory is a higher order version of gauge theory.
- Higher gauge theory formalises non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.
- Non-abelian holonomy along surfaces is multiplicative with respect to the several ways we can concatenate surfaces. (This is why higher category theory arises here.)
- We need a higher order version of a group: called a "2-group".
 2-groups are equivalent to crossed modules. A crossed module of groups G = (∂: E → G, ▷) is given by:
 a group map ∂: E → G,
 and a left-action of G on E, by automorphisms, such that:
 1. ∂(g ▷ e) = g∂(e)g⁻¹, if g ∈ G and e ∈ E;
 - 2. $\partial(e) \triangleright e' = ee'e^{-1}$, if $e, e' \in E$.

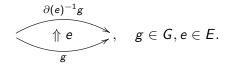
Crossed modules will mostly be finite throughout the talk.

Examples of crossed modules of groups $\mathcal{G} = (\partial \colon E \to G, \triangleright)$

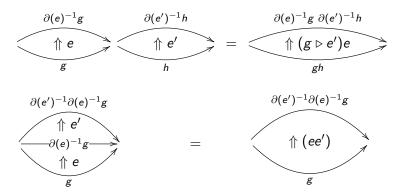
 G a group; A and abelian group. Consider a left-action ▷ of G on A, by automorphisms. We have a crossed module G = (A → 1G G, ▷).

In the general example above we can for instance put:

2. Given a group *H*, put $\mathcal{G} = (H \xrightarrow{g \mapsto \operatorname{Ad}_g} \operatorname{Aut}(H))$. Here $\operatorname{Ad}_g(x) = gxg^{-1}$. $\operatorname{Aut}(H)$ is the automorphism group of *H*. 2-dimensional (i.e. surface) holonomy functors Given $\mathcal{G} = (\partial : E \to G, \triangleright)$ we can define "bigons" in \mathcal{G} .



These compose horizontally and vertically:



2-dimensional holonomy functors

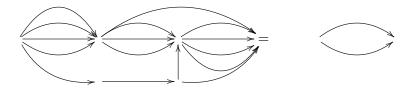
Horizontal and vertical compositions of bigons in \mathcal{G} are:

associative, and have units and inverses.

The interchange law is satisfied. This means that the evaluation of

does not depend on the order whereby it is performed.

As a consequence evaluations of more complicated diagrams like:



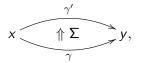
do not depend on the order whereby we apply compositions. A very general result is in 1702.00868 [math-ph] This leads to a notion of non-abelian multiplication along surfaces. This notion underpins surface-holonomy in higher gauge theory.

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:

Two paths $\gamma, \gamma' \colon [0,1] \to M$, with the same initial and end-point. A homotopy (i.e. a 'surface') $\Sigma \colon [0,1]^2 \to M$, connecting γ and γ' . Σ is considered up to homotopy relative to $\partial([0,1]^2)$.

Geometric bigons are represented as:



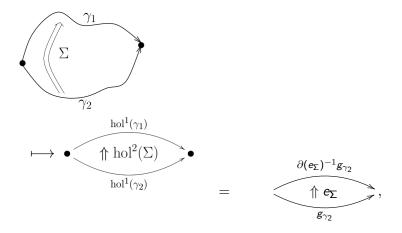
Geometric bigons can be concatenated horizontally and vertically.

Definition Let *M* be a manifold; *G* a crossed module. A 2-dimensional holonomy (i.e. a higher gauge field) is a map:

{Geometric bigons in
$$M$$
} $\xrightarrow{\mathcal{F}}$ {Bigons in \mathcal{G} }

Preserving horizontal and vertical compositions. The underlying \mathcal{G} -2-bundle can be reconstructed from \mathcal{F} .

2D holonomy along $\boldsymbol{\Sigma}$



Note: for Lie crossed modules $(\partial : E \to G, \triangleright)$, 2-dimensional holonomies arise from pairs $A \in \Omega^1(M, \mathfrak{g})$ and $B \in \Omega^2(M, \mathfrak{e})$, with $\partial(B) = Curv_A = dA + \frac{1}{2}[A, A]$.

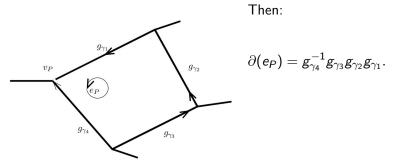
The HGT analogue of Kitaev quantum double model

Let $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ be a crossed module. Let M be a compact manifold, possibly with boundary. Let $L = (L^0, L^1, L^2, L^3...)$ be a CW-decomposition of M. In HGT 3-cells $b \in L^3$ (called blobs) have an important role.

A discrete 2-connection \mathcal{F} is given by an assignment:

$$\gamma \in L^1 \mapsto g_\gamma \in G \text{ and } P \in L^2 \mapsto e_P \in E,$$

satisfying the **fake-flatness condition**, namely: If we have a configuration like:



The Hilbert space for the higher Kitaev model

- M a compact manifold, with a CW-decomposition L.
- We put $\Phi(M, L) = \{ \text{Discrete } 2 \text{connections } \mathcal{F} \}.$
- And $V(M, L) = \mathbb{C}\Phi(M, L)$. Hilbert space for discrete HGT.
- The group of gauge operators puts together gauge transformations along vertices and along edges:

$$T(M,L) = (\prod_{v \in L^0} G) \ltimes (\prod_{\sigma(t) \xrightarrow{t} \tau(t) \in L^1} E)$$

 $= \{ \textit{Functions } L^0 \to G \} \ltimes \{ \textit{Functions } L^1 \to E \}$

Where $U \in \prod_{v \in L^0} G$ left-acts in $\eta \in \prod_{t \in L^1} E$ as:

$$(U.\eta)(\sigma(t) \xrightarrow{t} \tau(t)) = U(\sigma(t)) \triangleright \eta((\sigma(t) \xrightarrow{t} \tau(t)))$$

For S^1 with one vertex and one edge $T(S^1, L) = G \ltimes E$.

Discrete surface holonomy. arXiv:1702.00868

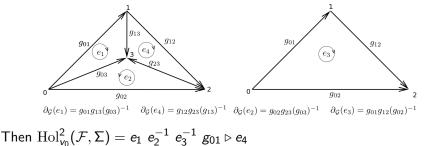
Let $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ be a crossed module.

Let $\mathcal{F} \in \Phi(M, L)$ be a discrete 2-connection.

Theorem Let Σ be a 2-sphere cellularly embedded in M, v ∈ Σ, an 'initial point'. We have a surface-holonomy: Hol²_v(F, Σ) ∈ ker(∂) ⊂ E.

This surface-holonomy depends only on the starting point $v \in \Sigma$, and not in the way whereby we combine 2-cells.

For example, consider the discrete 2-connection on the tetrahedron Σ , below, based on the bottom left corner v_0 .

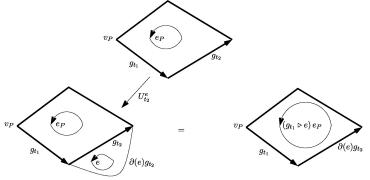


Action of the group of gauge operators

We have an action of the group of gauge operators T(M, L) on Φ(M, L), preserving 2D holonomy, up to acting by g ∈ G.

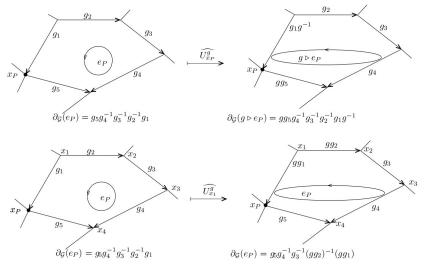
Given $t \in L^1$, and $e \in E$, let U_t^e be the unique gauge operator supported in t with $U_t^e(t) = e$. (Called an edge gauge spike.)

Given $v \in L^0$, and $g \in G$, let U_t^e be the unique gauge operator supported in v with $U_v^g(v) = g$. (Called a vertex gauge spike.)



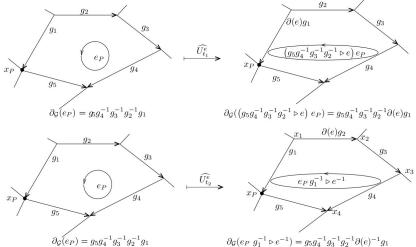
Action of the group of gauge operators

Some examples of vertex gauge transformations:



Action of the group of gauge operators

Some examples of edge gauge transformations:



Vertex, edge and blob operators

Let $\mathcal{G} = (\partial \colon E \to G)$ be a crossed module.

- ▶ All vertex operators U_v^g : $V(M, L) \rightarrow V(M, L)$ are unitary.
- ▶ All edge operators U_t^e : $V(M, L) \rightarrow V(M, L)$ are unitary.
- Given a 3-cell b, a blob, let ∂b ⊂ M be its boundary.
 Hence ∂b is a 2-sphere cellularly embedded in M.
 The blob operator C^k_b is defined as (here k ∈ ker(∂))

$$\mathcal{C}_{b}^{k}(\mathcal{F}) = \begin{cases} \mathcal{F}, \text{ if } 2hol(\mathcal{F}, \partial b) = k \\ 0, \text{ otherwise} \end{cases}$$

• Clearly $\mathcal{C}_b^k \colon V(M,L) \to V(M,L)$ is self-adjoint.

The higher gauge theory Kitaev model

 $V(M, L) = \mathbb{C} \{ \text{Discrete } 2 - \text{connections } \mathcal{F} \}.$ Hamiltonian $H \colon V(M, L) \to V(M, L).$

$$H = -\sum_{v \in L^0} \frac{1}{|G|} \sum_{g \in G} \hat{U}_v^g - \sum_{t \in L^1} \frac{1}{|E|} \sum_{e \in E} \hat{U}_t^e - \sum_{b \in L^3} \mathcal{C}_b^{1_E}.$$
$$H = -\sum_{v \in L^0} \mathcal{A}_v - \sum_{t \in L^1} \mathcal{B}_t - \sum_{b \in L^3} \mathcal{C}_b^{1_E}.$$

All operator in the last sum are commuting self-adjoint projectors.

 $C_b^{1_E}$ forces the surface-holonomy of a discrete 2-connection \mathcal{F} to be trivial along the boundary of the 3-cell *b*.

Algebra generated by the U_t^g , U_t^e and C_b^k is our proposal for a local operator algebra \mathcal{A} . Relations are in arXiv:1702.00868. Physically relevant (i.e. topological) excitations are module over \mathcal{A} . Ground state degeneracy of higher Kitaev model

Theorem The ground state of $H: V(M, L) \rightarrow V(M, L)$ is

$$GS(M,L) = \left\{ \mathcal{F} \in V(M,L) \middle| \begin{array}{l} U_v^g \mathcal{F} = \mathcal{F}, \text{ for all } v \in L_0, g \in G \\ U_t^e \mathcal{F} = \mathcal{F}, \text{ for all } t \in L_1, e \in E \\ \mathcal{C}_b^{1_G} \mathcal{F} = \mathcal{F}, \text{ for all } b \in L_3 \end{array} \right\}$$

 $\cong \mathbb{C}\{Maps \ M \to B_{\mathcal{G}}\}/Homotopy, \text{ canonically }.$

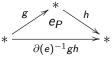
Hence G(M, L) = V(L) depends only on M and not on L.

Here $B_{\mathcal{G}}$ is the classifying space of the crossed module \mathcal{G} .

Classifying space $B_{\mathcal{G}}$ of a crossed module \mathcal{G}

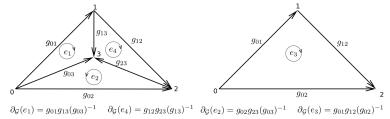
As the geometric realisation of a simplicial set $B_{\mathcal{G}}$ has:

- one 0-simplex {*}
- One 1-simplex $* \xrightarrow{g} *$ for each $g \in G$.
- ▶ 2-simplices have the form (where $g, h \in G$ and $e \in E$):



Plaquette P is based at bottom left vertex, and attaches clockwise.

• 3-simplices have the form (where $e_1 e_2^{-1} e_3^{-1} g_{01} \triangleright e_4 = 1_G$):



The *n*-simplices are analogous. Colourings of 1 and 2-cells of the *n*-simplex, fake-flat on trianges and flat on tetrahedra,

References:

- Bullivant A, Martin P, and Faria Martins J: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory, arXiv:1807.09551.
- Bullivant A, Calçada M, Kádár Z, Martin P, and Faria Martins J: Higher lattices, discrete two-dimensional holonomy and topological phases in (3+1) D with higher gauge symmetry, arXiv:1702.00868.
- Bullivant A, Calçada M, Kádár Z, Martin P, and Faria Martins J: Topological phases from higher gauge symmetry in 3+1 dimensions. PHYSICAL REVIEW B 95, 155118 (2017)
- Faria Martins J, Picken R..: Surface Holonomy for Non-Abelian 2-Bundles via Double Groupoids, Advances in Mathematics Volume 226, Issue 4, 1 March 2011, Pages 3309-3366
- Faria Martins J, Porter T : On Yetter's Invariant and an Extension of the Dijkgraaf-Witten Invariant to Categorical Groups, Theory and Application of Categories, Vol. 18, 2007, No. 4, pp 118-150.