Invariants of knots, loop braids and knotted surfaces derived from finite 2-groups

Knots and Braids in Norway 2019, NTNU (Trondheim)

16th May 2019

João Faria Martins (University of Leeds)

LEVERHULME TRUST

Partially funded by the Leverhulme Trust research project grant: RPG-2018-029: "Emergent Physics From Lattice Models of Higher Gauge Theory"

Knot complements are aspherical!

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.

Definition: (n=type) Let
$$n \in \mathbb{Z}_0^+$$
.

An *n*-type is a path-connected pointed space X = (X, *) such that:

 X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)

2.
$$\pi_i(X) = 0$$
, if $i > n$.

Let $\{n$ -types $\}$ be the category with objects the *n*-types.

Given n-types X and Y,

morphisms $X \rightarrow Y$ are pointed homotopy classes of pointed maps.

1-types and knot complements

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1: \{1\text{-types}\} \rightarrow \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Two pointed maps $f, f': X \to Y$ are pointed homotopic iff the induced maps $f_*, f'_*: \pi_1(X) \to \pi_1(Y)$ are equal.

In particular it follows that:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$. A generator for each arc of projection. A relation for each crossing:

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^4$ Let $\Sigma \subset S^4$ be a closed surface smoothly embedded in S^4 . (Any genus, any number of components, possibly non-orientable.) Fact: $S^4 \setminus \Sigma$ need not be aspherical. (Likely it never is.) Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy. We need to look at 'higher order' homotopy type information in order to classify $S^4 \setminus \Sigma$ up to homotopy.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3. Hence $\mathcal{P}_2(S^4\setminus\Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

... To be explained later.

We will see 2-groups as being represented by crossed modules.

Crossed modules Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

• A left action \triangleright of G on E, by automorphisms.

Such that the following conditions (Peiffer equations) hold:

1.
$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

• *G* a group; *A* an abelian group. Consider a left-action \triangleright of *G* on *A*, by automorphisms. We have a crossed module $\mathcal{G} = (A \xrightarrow{a \in A \longmapsto 1_G} G, \triangleright).$

▶ Let V be a set, G a group. Consider a map ∂_0 : V → G. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle \partial_0\colon V\to G\rangle = \big(\partial\colon \mathcal{F}(V\xrightarrow{\partial_0} G)\longrightarrow G, \triangleright\big).$$

Facts about crossed modules $\mathcal{G} = (\partial \colon E \to G, \triangleright)$

- 1. Crossed modules and their maps form a category.
- 2. Each crossed module embeds into an exact sequence like:

$$\pi_2(\mathcal{G}) \doteq \ker(\partial) \xrightarrow{i} \boxed{E \xrightarrow{\partial} \mathcal{G}} \xrightarrow{p} \pi_1(\mathcal{G}) \doteq \operatorname{coker}(\partial).$$

- 3. Yield cohomology class $\omega \in H^3(\pi_1(\mathcal{G}), \pi_2(\mathcal{G}))$, the *k*-invariant.
- 4. An algebraic 2-type is a triple (A, K, ω) , where A is an abelian group with a left action of K, and $\omega \in H^3(K, A)$.

We have a fundamental algebraic 2-type functor:

{Pointed topological spaces} \rightarrow {Algebraic 2-types} sending a space X to the triple $(\pi_2(X), \pi_1(X), k(X))$, called the algebraic 2-type of X.

We also have a functor:

$$\rho_{2}: \{ \text{Crossed Modules} \} \rightarrow \{ \text{Algebraic 2-types} \} \\ \mathcal{G} \mapsto (\pi_{2}(\mathcal{G}), \pi_{1}(\mathcal{G}), k(\mathcal{G})).$$

The algebraic 2-type of a space classifies its homotopy 2-type. But non pointed-homotopic maps between 2-types may induce the same map on fundamental algebraic 2-types.

Homotopy of crossed modules

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$.

Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$.

Homotopies are built on group derivations $s: G \rightarrow E'$.

We have category {**Cof-Crossed Modules**}/ \cong . Objects crossed modules $\mathcal{G} = (\partial : E \to F)$; *F* a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem Ho(Crossed Modules) \cong 2-types. I.e. {Cof-Crossed Modules}/ \cong is equivalent to category of 2-types.

The fundamental crossed module $\Pi_2(X, X^1)$

Theorem Ho(**Crossed Modules**) \cong **2-types**. I.e.

 $\{\mbox{Cof-Crossed Modules}\}/\cong\mbox{is equivalent to category of 2-types}.$

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1) = (\partial \colon \pi_2(X,X^1) \to \pi_1(X^1), \triangleright).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \ \{ \textbf{CW-complexes} \} \ / \cong \ \longrightarrow \{ \textbf{Cof-Crossed Modules} \} / \cong.$

Theorem (Whitehead / MacLane 1950 PNAS)

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \ \pi_1(X) = \operatorname{coker}(\partial), \ k(X) = k(\Pi_2(X)).$

Presentation of $\Pi_2(X, X^1)$ by generators and relations Let X be a reduced CW-complex. X^i union of cells of index $\leq i$.

Procedure to describe a presentation of the crossed module:

$$\Pi_2(X,X^1) = (\pi_2(X,X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X, X^1) = (\partial : \pi_2(X^3, X^1) \to \pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2, X^1)$ by imposing a crossed module 2-relation for each 3-cell.

$$\Pi_2(X, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 0 \text{ for each } c \in \{3\text{-cells}\} \right\rangle.$$

Also Π_2 satisfies a van Kampen type property. (Brown-Higgins).

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X If X and Y are homotopic CW-complexes then $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X, X^1) \vee \Pi_2(D^2, S^1)^{\vee m} = \Pi_2(Y, Y^1) \vee \Pi_2(D^2, S^1)^{\vee n}$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of } X}} \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

 $B_{\mathcal{G}}$ is the classifying space of \mathcal{G} . $\operatorname{TOP}(X, B_{\mathcal{G}})$ function space.

Calculation of $\Pi_2(S^4 \setminus \Sigma)$, Σ a knotted surface

Let $\Sigma \subset S^4 = \mathbb{R}^4 \cup \{\infty\}$ be a knotted surface.

(Any genus, any number of components.)

Suppose the projection on the *t*-variable is a Morse function in Σ .

To simplify, suppose critical points appear in increasing order.

Let $\Sigma_t = \Sigma \cap (\mathbb{R}^3 \times \{t\})$, called the "still of Σ at t".

Handle decomposition (fat CW-decomposition) of $M = S^4 \setminus \Sigma$

Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1-handle of S⁴ \ Σ.
 (Hence a free generator of the group π₁(M⁽¹⁾).)
- A saddle point in Σ yields a 2-handle of S⁴ \ Σ.
 (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).)
- A maximal point in Σ yields a 3-handle of S⁴ \ Σ. (Hence a 2-relation needs to be imposed on Π₂(M⁽²⁾, M⁽¹⁾) in order to get to Π₂(M, M⁽¹⁾).)

A presentation for $\Pi_2(M, M^{(1)})$ can be derived from a 'movie' of Σ .

A movie for a knotted union $\boldsymbol{\Sigma}$ of two tori

Free generators of $\pi_1(M^{(1)})$ at minimal points Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:

As the movie evolves, throughout an isotopy, we colour the link arcs of each still Σ_t by the generators of $\pi_1(M^{(1)})$ they represent. There are relations between generators at different times. For R_2 :

Free generators of $\Pi_2(M^{(2)}, M^{(1)})$ at saddle points

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

$$\partial(e) = X^{-1}Y.$$

Bands are to be kept and evolve throughout the rest of the movie. Each arc of a band in a projection gives element of $\pi_2(M^{(2)}, M^{(1)})$.

Maximal points

Locally, an oriented maximal point looks like:

Some bands will possibly be present. Before maximal point, configuration looks like:

2-relation: $e f (X^{-1} \triangleright e^{-1})$ = 1. A movie for a knotted union $\boldsymbol{\Sigma}$ of two tori

 $\Sigma =$ Knotted $T^2 \sqcup T^2$ above. Circles oriented counterclockwise

 $\Sigma =$ Knotted $T^2 \sqcup T^2$ above. $M = S^4 \setminus \Sigma$

Hence

$$\Pi_2(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{\substack{g \mapsto 1 \\ g \mapsto 1 \\ \to i \neq X, Y]}} \mathcal{F}(\{X, Y\}) \mid f = X \triangleright f \right\rangle$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1
angle$, free abelian group on X and Y.

$$\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\}/ < f = X.f > .$$

Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation f = X.f.

If
$$\mathcal{G} = (E \to G, \triangleright)$$
 is finite and $\partial(E) = \{1_G\}$ then:

 $I_{\mathcal{G}}(M) = \# \{ (X, Y, f) \in G \times G \times E \mid XY = YX, f = X \triangleright f \} (\#E).$

Another example $\Sigma' =$ Spun Hopf Link, a knotted $T^2 \sqcup T^2$ Final stage:

$$\partial(e) = 1$$

$$\partial(f) = 1$$

$$\partial(g) = YXY^{-1}X^{-1}$$

$$\partial(h) = XYX^{-1}Y^{-1}$$

$$(Y \triangleright e) e^{-1} (X \triangleright f^{-1}) f = 1$$

 $\Sigma' =$ Spun Hopf Link. $M = S^4 \setminus \Sigma$ Hence

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{g \mapsto [Y, X] \\ f \mapsto [Y, X] \\ h \mapsto [X, Y]}} \mathcal{F}(X, Y) \middle| \begin{array}{c} (Y \triangleright e) e^{-1} \\ (X \triangleright f^{-1}) f \\ =1 \end{array} \right\rangle$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1
angle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}.$$

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$ then:

$$I_{\mathcal{G}}(M) = \#\left\{(X, Y, e, f) \in G^2 \times E^2 \mid \frac{XY = YX,}{(Y \triangleright e) - e - (X \triangleright f) + f = 0}\right\}.$$

 $I_{\mathcal{G}}$ can distinguish Σ' from $\Sigma =$ knotted $T^2 \sqcup T^2$ above.

More results on $I_{\mathcal{G}}(S^4 \setminus \Sigma)$

Let $\mathcal{G} = (E \to G, \triangleright)$ be a finite crossed module.

- 1. $\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$ is able to separate between pairs of knotted surfaces with different knot groups. (For some choices of \mathcal{G} .)
- 2. Recal Shin Satoh's "tube-map" $\mathcal{T}: \{ Welded \ links \} \rightarrow \{ Knotted \ Tori \}$

Suppose $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$. The welded knot invariant

$$K\mapsto I_{\mathcal{G}}(S^4\setminus T(K))$$

can be calculated from the biquandle with set $G \times E$:

Applications to 3+1D topological phases of matter start here....

References:

- Faria Martins J: Categorical Groups, Knots and Knotted Surfaces, J. Knot Theory Ramifications 16 (2007), no 9, 1181-1217.
- Faria Martins J: On the Homotopy Type and the Fundamental Crossed Complex of the Skeletal Filtration of a CW-Complex. Homol. Homotopy Appl. Vol. 9 (2007), No. 1, pp.295-329.
- Faria Martins J., Kauffman L.H.: Invariants of Welded Virtual Knots Via Crossed Module Invariants of Knotted Surfaces, Compositio Mathematica. Volume 144, Issue 04, July 2008, pp 1046-1080.
- Faria Martins J.: The Fundamental Crossed Module of the Complement of a Knotted Surface. Transactions of the American Mathematical Society. 361 (2009), 4593-4630.
- Bullivant A, Martin P, and Faria Martins J: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. arXiv:1807.09551 [math-ph]
- Brown R., Higgins P.J.: Colimit Theorems for Relative Homotopy Groups, J. Pure Appl. Algebra 22 (1981), no. 1, 11-41
- S. Satoh, Virtual knot presentation of ribbon torus-knots, J. Knot Theory Ramifications 9 (2000), 531-542.