Invariants of knots, loop braids and knotted surfaces derived from finite 2-groups

Knots and Braids in Norway 2019, NTNU (Trondheim)

$$
\text { 16th May } 2019
$$

João Faria Martins (University of Leeds)

LEVERHULME
TRUST \qquad

Partially funded by the Leverhulme Trust research project grant:
RPG-2018-029: "Emergent Physics From Lattice Models of Higher Gauge Theory"

Knot complements are aspherical!

Let K be a (one-component) piecewise linear / smooth knot in S^{3}

- Papakyriakopoulos theorem: $S^{3} \backslash K$ is an aspherical space.
- Asphericity means that: $\pi_{i}\left(S^{3} \backslash K\right)=0$, if $i \geq 2$.
- More generally $S^{3} \backslash L$ is aspherical if $L \subset S^{3}$ is a non-splittable link.

Definition: ($\mathrm{n}=$ =type) Let $n \in \mathbb{Z}_{0}^{+}$.
An n-type is a path-connected pointed space $X=(X, *)$ such that:

1. X is homeomorphic to a CW-complex, with $*$ being a 0 -cell.
(Frequenly omitted in model categories literature.)
2. $\pi_{i}(X)=0$, if $i>n$.

Let $\{n$-types $\}$ be the category with objects the n-types.
Given n-types X and Y, morphisms $X \rightarrow Y$ are pointed homotopy classes of pointed maps.

1-types and knot complements

Therefore, complements of non-splittable links in S^{3} are 1-types.
Well known theorem: The fundamental group functor

$$
\pi_{1}:\{1 \text {-types }\} \rightarrow\{\text { groups }\}
$$

is an equivalence of categories. This implies:

1. Two 1-types X and Y are homotopic iff $\pi_{1}(X) \cong \pi_{1}(Y)$.
2. Two pointed maps $f, f^{\prime}: X \rightarrow Y$ are pointed homotopic iff the induced maps $f_{*}, f_{*}^{\prime}: \pi_{1}(X) \rightarrow \pi_{1}(Y)$ are equal.

In particular it follows that:
Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^{3}$ is classified by $\pi_{1}\left(S^{3} \backslash L\right)$.
Also recall: Wirtinger presentation for $\pi_{1}\left(S^{3} \backslash K\right)$.
A generator for each arc of projection. A relation for each crossing:

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^{4}$
Let $\Sigma \subset S^{4}$ be a closed surface smoothly embedded in S^{4}.
(Any genus, any number of components, possibly non-orientable.)
Fact: $S^{4} \backslash \Sigma$ need not be aspherical. (Likely it never is.)
Also $\pi_{1}\left(S^{4} \backslash \Sigma\right)$ does not classify $S^{4} \backslash \Sigma$ up to homotopy.
We need to look at 'higher order' homotopy type information in order to classify $S^{4} \backslash \Sigma$ up to homotopy.
Let us look at the homotopy 2-type $\mathcal{P}_{2}\left(S^{4} \backslash \Sigma\right)$ of $S^{4} \backslash \Sigma$.
This topological space $\mathcal{P}_{2}\left(S^{4} \backslash \Sigma\right)$ is obtained from $S^{4} \backslash \Sigma$ by functorially killing all homotopy groups π_{i}, for $i \geq 3$.
I.e. we throw away homotopy theoretical information of order ≥ 3.

Hence $\mathcal{P}_{2}\left(S^{4} \backslash \Sigma\right)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.
... To be explained later.
We will see 2-groups as being represented by crossed modules.

Crossed modules

Definition (Crossed module)

A crossed module $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- A group map $\partial: E \rightarrow G$.
(G is called the "base-group". E is the "principal group".)
- A left action \triangleright of G on E, by automorphisms.
- Such that the following conditions (Peiffer equations) hold:

1. $\partial(g \triangleright e)=g \partial(e) g^{-1}$, where $g \in G, e \in E$;
2. $\partial(e) \triangleright f=e f e^{-1}$, where $e, f \in E$.

Example

- G a group; A an abelian group.

Consider a left-action \triangleright of G on A, by automorphisms.
We have a crossed module $\mathcal{G}=\left(A \xrightarrow{a \in A \longmapsto 1_{G}} G, \triangleright\right)$.

- Let V be a set, G a group. Consider a map $\partial_{0}: V \rightarrow G$. We can define the "free crossed module on ∂_{0} ", denoted

$$
\mathcal{U}\left\langle\partial_{0}: V \rightarrow G\right\rangle=\left(\partial: \mathcal{F}\left(V \xrightarrow{\partial_{0}} G\right) \longrightarrow G, \triangleright\right) .
$$

Facts about crossed modules $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$

1. Crossed modules and their maps form a category.
2. Each crossed module embeds into an exact sequence like:

$$
\pi_{2}(\mathcal{G}) \doteq \operatorname{ker}(\partial) \stackrel{i}{\rightarrow} E \xrightarrow{\partial} G \xrightarrow{p} \pi_{1}(\mathcal{G}) \doteq \operatorname{coker}(\partial)
$$

3. Yield cohomology class $\omega \in H^{3}\left(\pi_{1}(\mathcal{G}), \pi_{2}(\mathcal{G})\right)$, the k-invariant.
4. An algebraic 2-type is a triple (A, K, ω), where A is an abelian group with a left action of K, and $\omega \in H^{3}(K, A)$.
We have a fundamental algebraic 2-type functor:
\{Pointed topological spaces $\} \rightarrow$ \{Algebraic 2-types $\}$ sending a space X to the triple $\left(\pi_{2}(X), \pi_{1}(X), k(X)\right)$, called the algebraic 2-type of X.

We also have a functor:
$\rho_{2}:\{$ Crossed Modules $\} \rightarrow$ \{Algebraic 2-types $\}$

$$
\mathcal{G} \mapsto\left(\pi_{2}(\mathcal{G}), \pi_{1}(\mathcal{G}), k(\mathcal{G})\right) .
$$

The algebraic 2-type of a space classifies its homotopy 2-type.
But non pointed-homotopic maps between 2-types may induce the same map on fundamental algebraic 2-types.

Homotopy of crossed modules

A crossed module $\mathcal{G}=(E \xrightarrow{\partial} G)$ contains a short complex $E \rightarrow G$.
Given \mathcal{G} and $\mathcal{G}^{\prime}=\left(E^{\prime} \rightarrow G^{\prime}\right)$, \exists notion of homotopy of maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$.
Homotopies are built on group derivations $s: G \rightarrow E^{\prime}$.
We have category \{Cof-Crossed Modules $\} / \cong$.
Objects crossed modules $\mathcal{G}=(\partial: E \rightarrow F) ; F$ a free group. Maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$ are homotopy classes of maps $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$.

Theorem
$\mathrm{Ho}($ Crossed Modules) $\cong 2$-types. I.e.
\{Cof-Crossed Modules $\} / \cong$ is equivalent to category of 2-types.

The fundamental crossed module $\Pi_{2}\left(X, X^{1}\right)$

Theorem $\mathrm{Ho}($ Crossed $\operatorname{Modules}) \cong 2$-types. I.e.
\{Cof-Crossed Modules\}/ \cong is equivalent to category of 2-types.
This equivalence of categories can be made more concrete.

- Given a reduced CW-complex X, let X^{1} be its one-skeleton. We have a crossed module:

$$
\Pi_{2}\left(X, X^{1}\right)=\left(\partial: \pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right), \triangleright\right) .
$$

- Let $\{\mathbf{C W}$-complexes $\} / \cong$ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \rightarrow Y$ are pointed homotopy classes of pointed maps.

We have a functor
$\Pi_{2}:\{$ CW-complexes $\} / \cong \longrightarrow\{$ Cof-Crossed Modules $\} / \cong$.
Theorem (Whitehead / MacLane 1950 PNAS)

1. When restricted to 2-types, Π_{2} is an equivalence of categories.
2. $\Pi_{2}\left(X, X^{1}\right)$ faithfully represents the homotopy 2-type of X. Hence $\pi_{2}(X)=\operatorname{ker}(\partial), \pi_{1}(X)=\operatorname{coker}(\partial), k(X)=k\left(\Pi_{2}(X)\right)$.

Presentation of $\Pi_{2}\left(X, X^{1}\right)$ by generators and relations

 Let X be a reduced CW-complex. X^{i} union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:$$
\Pi_{2}\left(X, X^{1}\right)=\left(\pi_{2}\left(X, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)
$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_{1}\left(X^{1}\right)=\mathcal{F}$ (1-cells): free group on the set of 1-cells of X.
2. $\Pi_{2}\left(X^{2}, X^{1}\right)=\left(\partial: \pi_{2}\left(X^{2}, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)$
is the free crossed module on the attaching maps of the 2-cells.

$$
\Pi_{2}\left(X^{2}, X^{1}\right)=\mathcal{U}\left\langle\{2 \text {-cells }\} \xrightarrow{\partial} \pi_{1}\left(X^{1}\right)\right\rangle .
$$

3. $\Pi_{2}\left(X, X^{1}\right)=\left(\partial: \pi_{2}\left(X^{3}, X^{1}\right) \rightarrow \pi_{1}\left(X^{1}\right)\right)$
is obtained from the free crossed module $\Pi_{2}\left(X^{2}, X^{1}\right)$ by imposing a crossed module 2 -relation for each 3 -cell.
$\Pi_{2}\left(X, X^{1}\right)=\mathcal{U}\left\langle\{2\right.$-cells $\left.\} \xrightarrow{\partial} \pi_{1}\left(X^{1}\right)\right| \partial(c)=0$ for each $c \in\{3$-cells $\left.\}\right\rangle$.
Also Π_{2} satisfies a van Kampen type property. (Brown-Higgins).

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_{2}\left(X, X^{1}\right)$ doesn't depend on CW-decomposition of X If X and Y are homotopic CW-complexes then $\exists m, n \in \mathbb{Z}_{0}^{+}$such that:

$$
\Pi_{2}\left(X, X^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee m}=\Pi_{2}\left(Y, Y^{1}\right) \vee \Pi_{2}\left(D^{2}, S^{1}\right)^{\vee n} .
$$

We are using " $=$ " to say "isomorphic'.
Proposition Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$
\mathcal{I}_{\mathcal{G}}(X)=\frac{1}{(\# E)^{\text {number of 1-cells of } X}} \# \operatorname{hom}\left(\Pi_{2}\left(X, X^{1}\right), \mathcal{G}\right)
$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X.
Interpretation:

$$
I_{\mathcal{G}}(X)=\sum_{f \in \pi_{0}\left(\operatorname{TOP}\left(X, B_{\mathcal{G}}\right)\right)} \frac{1}{\# \pi_{1}\left(\operatorname{TOP}\left(X, B_{\mathcal{G}}\right), f\right)}
$$

$B_{\mathcal{G}}$ is the classifying space of $\mathcal{G} . \operatorname{TOP}\left(X, B_{\mathcal{G}}\right)$ function space.

Calculation of $\Pi_{2}\left(S^{4} \backslash \Sigma\right), \Sigma$ a knotted surface

 Let $\Sigma \subset S^{4}=\mathbb{R}^{4} \cup\{\infty\}$ be a knotted surface.(Any genus, any number of components.)
Suppose the projection on the t-variable is a Morse function in Σ.
To simplify, suppose critical points appear in increasing order. Let $\Sigma_{t}=\Sigma \cap\left(\mathbb{R}^{3} \times\{t\}\right)$, called the "still of Σ at t ".

Handle decomposition (fat CW-decomposition) of $M=S^{4} \backslash \Sigma$

Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1-handle of $S^{4} \backslash \Sigma$. (Hence a free generator of the group $\pi_{1}\left(M^{(1)}\right)$.)
- A saddle point in Σ yields a 2-handle of $S^{4} \backslash \Sigma$. (Hence a free crossed module generator of $\Pi_{2}\left(M^{(2)}, M^{(1)}\right)$.)
- A maximal point in Σ yields a 3-handle of $S^{4} \backslash \Sigma$. (Hence a 2-relation needs to be imposed on $\Pi_{2}\left(M^{(2)}, M^{(1)}\right)$ in order to get to $\Pi_{2}\left(M, M^{(1)}\right)$.)
A presentation for $\Pi_{2}\left(M, M^{(1)}\right)$ can be derived from a 'movie' of Σ.

A movie for a knotted union Σ of two tori

Free generators of $\pi_{1}\left(M^{(1)}\right)$ at minimal points

Let $\Sigma \subset S^{4}$, oriented surface, Morse conditions as above.
Let $M=S^{4} \backslash \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.
Locally, an oriented minimal point looks like:

A minimal point yields a 1 -handle of M. Hence a free generator of $X \in \pi_{1}\left(M^{(1)}\right)$. Denote it:

Concretely, $X \in \pi_{1}\left(M^{(1)}\right)$ can be defined as:

As the movie evolves, throughout an isotopy, we colour the link arcs of each still Σ_{t} by the generators of $\pi_{1}\left(M^{(1)}\right)$ they represent. There are relations between generators at different times. For $R 2$:

Free generators of $\Pi_{2}\left(M^{(2)}, M^{(1)}\right)$ at saddle points

 Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_{2}\left(M^{(2)}, M^{(1)}\right)$.

$$
\partial(e)=X^{-1} Y
$$

Bands are to be kept and evolve throughout the rest of the movie. Each arc of a band in a projection gives element of $\pi_{2}\left(M^{(2)}, M^{(1)}\right)$.

Maximal points

Locally, an oriented maximal point looks like:

Some bands will possibly be present. Before maximal point, configuration looks like:

In this case the 2-relations are as below:

A movie for a knotted union Σ of two tori

$\Sigma=$ Knotted $T^{2} \sqcup T^{2}$ above. Circles oriented counterclockwise

$X, Y \in \pi_{1}\left(M^{(1)}\right) ; e, f \in \pi_{2}\left(M^{(2)}, M^{(1)}\right)$.

$\Sigma=\operatorname{Knotted} T^{2} \sqcup T^{2}$ above. $M=S^{4} \backslash \Sigma$

Hence

$$
\Pi_{2}\left(M, M^{(1)}\right)=\mathcal{U}\langle\{e, f, g, h\} \xrightarrow{\substack{e \leftrightarrow 1 \\ f \leftrightarrow 1 \\ f \mapsto 1 \\ h \mapsto \mid}}| \mathcal{M} \mathcal{F}(\{X, Y\})|f=X \triangleright f\rangle
$$

$\pi_{1}(M)=\langle\{X, Y\} \mid[X, Y]=1\rangle$, free abelian group on X and Y.
$\left.\pi_{2}(M)=\mathbb{Z}\left[X, X^{-1}, Y, Y^{-1}\right]\{e, f, g\} /<f=X . f\right\rangle$.
Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation $f=X . f$.
If $\mathcal{G}=(E \rightarrow G, \triangleright)$ is finite and $\partial(E)=\left\{1_{G}\right\}$ then:

$$
I_{\mathcal{G}}(M)=\#\{(X, Y, f) \in G \times G \times E \mid X Y=Y X, f=X \triangleright f\}(\# E) .
$$

Another example $\Sigma^{\prime}=$ Spun Hopf Link, a knotted $T^{2} \sqcup T^{2}$
Final stage:

$\partial(e)=1$
$\partial(f)=1$
$\partial(g)=Y X Y^{-1} X^{-1}$
$\partial(h)=X Y X^{-1} Y^{-1}$
$(Y \triangleright e) e^{-1}\left(X \triangleright f^{-1}\right) f=1$

$\Sigma^{\prime}=$ Spun Hopf Link. $M=S^{4} \backslash \Sigma$

Hence
$\pi_{1}(M)=\langle\{X, Y\} \mid[X, Y]=1\rangle$, free abelian group on X and Y.

$$
\pi_{2}(M)=\frac{\mathbb{Z}\left[X, X^{-1}, Y, Y^{-1}\right]\{e, f, m\}}{\langle(Y \triangleright e)-e-(X \triangleright f)+f=0\rangle} .
$$

If $\mathcal{G}=(E \rightarrow G, \triangleright)$ is finite and $\partial(E)=\left\{1_{G}\right\}$ then:

$$
I_{\mathcal{G}}(M)=\#\left\{(X, Y, e, f) \in G^{2} \times\left. E^{2}\right|_{(Y \triangleright e)-e-(X \triangleright f)+f=0} ^{X Y=Y X}, \quad .\right.
$$

$I_{\mathcal{G}}$ can distinguish Σ^{\prime} from $\Sigma=$ knotted $T^{2} \sqcup T^{2}$ above.

More results on $I_{\mathcal{G}}\left(S^{4} \backslash \Sigma\right)$

Let $\mathcal{G}=(E \rightarrow G, \triangleright)$ be a finite crossed module.

1. $\Sigma \mapsto I_{\mathcal{G}}\left(S^{4} \backslash \Sigma\right)$ is able to separate between pairs of knotted surfaces with different knot groups. (For some choices of \mathcal{G}.)
2. Recal Shin Satoh's "tube-map"
$T:\{$ Welded links $\} \rightarrow\{$ Knotted Tori $\}$
Suppose $\mathcal{G}=(E \rightarrow G, \triangleright)$ is finite and $\partial(E)=\left\{1_{G}\right\}$.
The welded knot invariant

$$
K \mapsto I_{\mathcal{G}}\left(S^{4} \backslash T(K)\right)
$$

can be calculated from the biquandle with set $G \times E$:

Applications to $3+1 D$ topological phases of matter start here....

References:

- Faria Martins J: Categorical Groups, Knots and Knotted Surfaces, J. Knot Theory Ramifications 16 (2007), no 9, 1181-1217.
- Faria Martins J: On the Homotopy Type and the Fundamental Crossed Complex of the Skeletal Filtration of a CW-Complex. Homol. Homotopy Appl. Vol. 9 (2007), No. 1, pp.295-329.
- Faria Martins J., Kauffman L.H.: Invariants of Welded Virtual Knots Via Crossed Module Invariants of Knotted Surfaces, Compositio Mathematica. Volume 144, Issue 04, July 2008, pp 1046-1080.
- Faria Martins J.: The Fundamental Crossed Module of the Complement of a Knotted Surface. Transactions of the American Mathematical Society. 361 (2009), 4593-4630.
- Bullivant A, Martin P, and Faria Martins J: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. arXiv:1807.09551 [math-ph]
- Brown R., Higgins P.J.: Colimit Theorems for Relative Homotopy Groups, J. Pure Appl. Algebra 22 (1981), no. 1, 11-41
- S. Satoh, Virtual knot presentation of ribbon torus-knots, J. Knot Theory Ramifications 9 (2000), 531-542.

