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Knot complements are aspherical!
Let K be a (one-component) piecewise linear / smooth knot in S3

I Papakyriakopoulos theorem: S3 \ K is an aspherical space.

I Asphericity means that: πi (S
3 \ K ) = 0, if i ≥ 2.

I More generally S3 \ L is aspherical
if L ⊂ S3 is a non-splittable link. E.g.

L =

Definition: (n=type) Let n ∈ Z+
0 .

An n-type is a path-connected pointed space X = (X , ∗) such that:

1. X is homeomorphic to a CW-complex, with ∗ being a 0-cell.
(Frequenly omitted in model categories literature.)

2. πi (X ) = 0, if i > n.

Let {n-types} be the category with objects the n-types.

Given n-types X and Y ,
morphisms X → Y are pointed homotopy classes of pointed maps.



1-types and knot complements
Therefore, complements of non-splittable links in S3 are 1-types.

Well known theorem: The fundamental group functor

π1 : {1-types} → {groups}

is an equivalence of categories. This implies:

1. Two 1-types X and Y are homotopic iff π1(X ) ∼= π1(Y ).

2. Two pointed maps f , f ′ : X → Y are pointed homotopic iff
the induced maps f∗, f

′
∗ : π1(X )→ π1(Y ) are equal.

In particular it follows that:
Theorem: The homotopy type of the complement of a
non-splittable link L ⊂ S3 is classified by π1(S3 \ L).

Also recall: Wirtinger presentation for π1(S3 \ K ).
A generator for each arc of projection. A relation for each crossing:
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*
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Beyond 1-types: complements of knotted surfaces Σ ⊂ S4

Let Σ ⊂ S4 be a closed surface smoothly embedded in S4.
(Any genus, any number of components, possibly non-orientable.)

Fact: S4 \ Σ need not be aspherical. (Likely it never is.)

Also π1(S4 \ Σ) does not classify S4 \ Σ up to homotopy.

We need to look at ‘higher order’ homotopy type information in
order to classify S4 \ Σ up to homotopy.

Let us look at the homotopy 2-type P2(S4 \ Σ) of S4 \ Σ.

This topological space P2(S4 \ Σ) is obtained from S4 \ Σ by
functorially killing all homotopy groups πi , for i ≥ 3.

I.e. we throw away homotopy theoretical information of order ≥ 3.

Hence P2(S4 \ Σ) is a 2-type.

Theorem
Category of 2-types is equivalent to homotopy category of 2-groups.

... To be explained later.

We will see 2-groups as being represented by crossed modules.



Crossed modules
Definition (Crossed module)

A crossed module G = (∂ : E → G , .) is given by:

I A group map ∂ : E → G .
(G is called the “base-group”. E is the “principal group”.)

I A left action . of G on E , by automorphisms.
I Such that the following conditions (Peiffer equations) hold:

1. ∂(g . e) = g∂(e)g−1, where g ∈ G , e ∈ E ;

2. ∂(e) . f = efe−1, where e, f ∈ E .

Example
I G a group; A an abelian group.

Consider a left-action . of G on A, by automorphisms.

We have a crossed module G = (A
a∈A 7−→ 1G−−−−−−−→ G , .).

I Let V be a set, G a group. Consider a map ∂0 : V → G .
We can define the “free crossed module on ∂0”, denoted

U〈∂0 : V → G 〉 =
(
∂ : F(V

∂0−→ G ) −→ G , .
)
.



Facts about crossed modules G = (∂ : E → G , .)
1. Crossed modules and their maps form a category.
2. Each crossed module embeds into an exact sequence like:

π2(G)
.

= ker(∂)
i−→ E

∂−→ G
p−→ π1(G)

.
= coker(∂).

3. Yield cohomology class ω ∈ H3(π1(G), π2(G)), the k-invariant.
4. An algebraic 2-type is a triple (A,K , ω), where A is an abelian

group with a left action of K , and ω ∈ H3(K ,A).

We have a fundamental algebraic 2-type functor:

{Pointed topological spaces} → {Algebraic 2-types}
sending a space X to the triple (π2(X ), π1(X ), k(X )),
called the algebraic 2-type of X .

We also have a functor:

ρ2 : {Crossed Modules} → {Algebraic 2-types}
G 7→ (π2(G), π1(G), k(G)).

The algebraic 2-type of a space classifies its homotopy 2-type.
But non pointed-homotopic maps between 2-types may induce

the same map on fundamental algebraic 2-types.



Homotopy of crossed modules

A crossed module G = (E
∂−→ G ) contains a short complex E → G .

Given G and G′ = (E ′ → G ′), ∃ notion of homotopy of maps G → G′.

Homotopies are built on group derivations s : G → E ′.

We have category {Cof-Crossed Modules}/ ∼=.
Objects crossed modules G = (∂ : E → F ); F a free group.
Maps G → G′ are homotopy classes of maps G → G′.

Theorem
Ho(Crossed Modules) ∼= 2-types. I.e.

{Cof-Crossed Modules}/ ∼= is equivalent to category of 2-types.



The fundamental crossed module Π2(X ,X 1)
Theorem Ho(Crossed Modules) ∼= 2-types. I.e.

{Cof-Crossed Modules}/ ∼= is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

I Given a reduced CW-complex X , let X 1 be its one-skeleton.
We have a crossed module:

Π2(X ,X 1) = (∂ : π2(X ,X 1)→ π1(X 1), .).

I Let {CW-complexes}/ ∼= be the category with
objects reduced CW-complexes, with chosen CW-decomposition.
Maps X → Y are pointed homotopy classes of pointed maps.

We have a functor

Π2 : {CW-complexes} / ∼= −→ {Cof-Crossed Modules}/ ∼=.

Theorem (Whitehead / MacLane 1950 PNAS)

1. When restricted to 2-types, Π2 is an equivalence of categories.

2. Π2(X ,X 1) faithfully represents the homotopy 2-type of X .
Hence π2(X ) = ker(∂), π1(X ) = coker(∂), k(X ) = k(Π2(X )).



Presentation of Π2(X ,X 1) by generators and relations
Let X be a reduced CW-complex. X i union of cells of index ≤ i .
Procedure to describe a presentation of the crossed module:

Π2(X ,X 1) = (π2(X ,X 1)→ π1(X 1))

by generators and relations. (In the world of crossed modules.)

1. π1(X 1) = F(1-cells): free group on the set of 1-cells of X .

2. Π2(X 2,X 1) = (∂ : π2(X 2,X 1)→ π1(X 1))
is the free crossed module on the attaching maps of the 2-cells.

Π2(X 2,X 1) = U
〈
{2-cells} ∂−→ π1(X 1)

〉
.

3. Π2(X ,X 1) = (∂ : π2(X 3,X 1)→ π1(X 1))
is obtained from the free crossed module Π2(X 2,X 1)
by imposing a crossed module 2-relation for each 3-cell.

Π2(X ,X 1) = U
〈
{2-cells} ∂−→ π1(X 1) | ∂(c) = 0 for each c ∈ {3-cells}

〉
.

Also Π2 satisfies a van Kampen type property. (Brown-Higgins).



The homotopy invariant IG.

Up to homotopy Π2(X ,X 1) doesn’t depend on CW-decomposition of X

If X and Y are homotopic CW-complexes then ∃ m, n ∈ Z+
0 such that:

Π2(X ,X 1) ∨ Π2(D2, S1)∨m = Π2(Y ,Y 1) ∨ Π2(D2, S1)∨n.

We are using “=” to say “isomorphic’.

Proposition Let G = (∂ : E → G , .) be a finite crossed module.
Let X be a finite reduced CW-complex. The quantity:

IG(X ) =
1

(#E )number of 1-cells of X
# hom(Π2(X ,X 1),G),

does not depend on the chosen CW-decomposition of X .
Moreover, IG(X ) is a homotopy invariant of X .
Interpretation:

IG(X ) =
∑

f ∈π0(TOP(X ,BG))

1

#π1(TOP(X ,BG), f )

BG is the classifying space of G. TOP(X ,BG) function space.



Calculation of Π2(S4 \ Σ), Σ a knotted surface
Let Σ ⊂ S4 = R4 ∪ {∞} be a knotted surface.
(Any genus, any number of components.)
Suppose the projection on the t-variable is a Morse function in Σ.
To simplify, suppose critical points appear in increasing order.
Let Σt = Σ ∩ (R3 × {t}), called the “still of Σ at t”.
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yx



Handle decomposition (fat CW-decomposition) of M = S4 \ Σ

Σ

1−handles

2−handles 

3−handles

Let M(i) be union of handles of index ≤ i .
I A minimal point in Σ yields a 1-handle of S4 \ Σ.

(Hence a free generator of the group π1(M(1)).)
I A saddle point in Σ yields a 2-handle of S4 \ Σ.

(Hence a free crossed module generator of Π2(M(2),M(1)).)
I A maximal point in Σ yields a 3-handle of S4 \ Σ.

(Hence a 2-relation needs to be imposed on Π2(M(2),M(1)) in
order to get to Π2(M,M(1)).)

A presentation for Π2(M,M(1)) can be derived from a ‘movie’ of Σ.



A movie for a knotted union Σ of two tori



Free generators of π1(M (1)) at minimal points
Let Σ ⊂ S4, oriented surface, Morse conditions as above.
Let M = S4 \ Σ. Let M(i) be union of handles of degree ≤ i .

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M.
Hence a free generator of X ∈ π1(M(1)). Denote it:

X

Concretely, X ∈ π1(M(1)) can be defined as: *
X

As the movie evolves, throughout an isotopy, we colour the link
arcs of each still Σt by the generators of π1(M(1)) they represent.
There are relations between generators at different times. For R2:

X Y X  
X

Y

            −1

X
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XX

Y



Free generators of Π2(M (2),M (1)) at saddle points
Locally, an (oriented) saddle point looks like:

When passing saddle point, add a ‘band’, kept throughout movie:
This band will later bookkeep where the saddle point was made,
and the attaching region of corresponding 2-handle of M.

Attaching

2−handle
for

region

Each band gives free crossed module generator e ∈ π2(M(2),M(1)).
X Y

X Y

X Y

e ∂(e) = X−1Y .

Bands are to be kept and evolve throughout the rest of the movie.
Each arc of a band in a projection gives element of π2(M(2),M(1)).



Maximal points

Locally, an oriented maximal point looks like:

Some bands will possibly be present.
Before maximal point, configuration looks like:

In this case the 2-relations are as below:

e

f

X−1 . e

X

∂(f )X∂(e)∂(f )X∂(e)−1

g
2-relation:
e f (X−1 . e−1)
= 1.



A movie for a knotted union Σ of two tori



Σ = Knotted T 2 t T 2 above. Circles oriented counterclockwise

e f

X X XY Y Y

X ,Y ∈ π1(M(1)); e, f ∈ π2(M(2),M(1)).

∂(e) = 1
∂(f ) = 1

e

f

X . f

X X Y

YXYX−1

e

f

g hX . f

X X

X X
Y Y

YXYX−1

XYX−1

∂(g) = 1
∂(h) = XYX−1Y−1

e e−1 (X.f −1) f = 1

(X . f )f −1 = 1.



Σ= Knotted T 2 t T 2 above. M = S4 \ Σ

Hence

Π2(M,M(1)) = U

〈
{e, f , g , h}

e 7→1
f 7→1
g 7→1

h 7→[X ,Y ]−→ F({X ,Y }) | f = X . f

〉

π1(M) = 〈{X ,Y }|[X ,Y ] = 1〉, free abelian group on X and Y .

π2(M) = Z[X ,X−1,Y ,Y−1]{e, f , g}/ < f = X .f >.

Quotient of the free module over the algebra of Laurent
polynomials in X and Y , on the generators e, f , g ,
by the relation f = X .f .

If G = (E → G , .) is finite and ∂(E ) = {1G} then:

IG(M) = #
{

(X ,Y , f ) ∈ G × G × E | XY = YX , f = X . f
}

(#E ).



Another example Σ′ = Spun Hopf Link, a knotted T 2 tT 2

Final stage:

Y . e

f

g h

X . f

e
YXY−1 X

YXY−1 X
Y Y

YXYX−1

XYX−1

∂(e) = 1
∂(f ) = 1
∂(g) = YXY−1X−1

∂(h) = XYX−1Y−1

(Y . e) e−1 (X . f −1) f = 1



Σ′ = Spun Hopf Link. M = S4 \ Σ

Hence

Π2(M,M(1)) = U

〈
{e, f , g , h}

e 7→1
f 7→1

g 7→[Y ,X ]
h 7→[X ,Y ]−→ F(X ,Y )

∣∣∣∣∣
(Y .e) e−1

(X.f −1) f

=1

〉

π1(M) = 〈{X ,Y }|[X ,Y ] = 1〉, free abelian group on X and Y .

π2(M) =
Z[X ,X−1,Y ,Y−1]{e, f ,m}

< (Y . e)− e − (X . f ) + f = 0 >
.

If G = (E → G , .) is finite and ∂(E ) = {1G} then:

IG(M) = #
{

(X ,Y , e, f ) ∈ G 2 × E 2 | XY=YX ,
(Y .e)−e−(X.f ) +f=0

}
.

IG can distinguish Σ′ from Σ = knotted T 2 t T 2 above.



More results on IG(S4 \ Σ)
Let G = (E → G , .) be a finite crossed module.

1. Σ 7→ IG(S4 \ Σ) is able to separate between pairs of knotted
surfaces with different knot groups. (For some choices of G.)

2. Recal Shin Satoh’s “tube-map”

T : {Welded links} → {Knotted Tori}

Suppose G = (E → G , .) is finite and ∂(E ) = {1G}.
The welded knot invariant

K 7→ IG(S4 \ T (K ))

can be calculated from the biquandle with set G × E :

(z , a)

))

(w , b)

uu
(w , a + b − w−1 . a)

(
w−1zw ,w−1 . a

) .
Applications to 3+1D topological phases of matter start here....
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