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The category of manifold and cobordisms (sketch)
Consider the (symmmetric monoidal) category (n,n + 1)-Cob.

I Objects: (n − 1)-compact manifolds A,B,...

I Morphisms [M] : A→ B are equivalence classes of diagrams:
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Where M is a smooth (n − 1)-manifold, and
i and j induce a diffeomorphism 〈i , j〉 : A t B → ∂(M).
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Composition of morphisms
Issues with smooth structure.
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Topological quantum field theories

Definition
Given a non-negative integer n,
a Topological Quantum Field Theory (TQFT)
is a symmetric monoidal functor:

F : (n,n + 1)-Cob→ Vect

In this talk I will:

I Recall Quinn’s total homotopy TQFT

F (s)
B : (n,n + 1)-Cob→ Vect

(Here B a homotopically finite space: a parameter of theory)

I Explain combinatorial calculation of F (s)
B

if B is the classifying space of a homotopy finite ω-groupoid.

I Relate to higher gauge theory.

I In passing mention higher Kitaev models; cf. Teotónio’s talk.
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Homotopy finite spaces (or simplicial sets)

Definition
A space X is homotopy finite (HF) if:

I X has only a finite number of path components.
I If K ∈ π0(X ) – set of path components of X – then πi (K ) is:

I trivial if i > n, for some n.
I finite for all i .

If X is HF, the homotopy content of X is:

χπ =
∑
K∈π0

|π2(K )| |π4(K )| |π6(K )| . . .
|π1(K )| |π3(K )| |π5(K )| . . .

∈ Q

First appeared (I think) in:
Frank Quinn. Lectures on axiomatic topological quantum field
theory. In Geometry and quantum field theory. (1995)
John C. Baez and James Dolan. From finite sets to Feynman
diagrams. In Mathematics unlimited-2001 and beyond (2001)
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Notes about homotopically finite spaces

I If X and Y are HF then so are X × Y and X t Y , and:

χπ(X × Y ) = χπ(X )× χπ(Y )

χπ(X t Y ) = χπ(X ) + χπ(Y )

I If p : E → B is a (Hurewicz) fibration of HF spaces
B path-connected, b ∈ B, Fb = p−1(b):

χπ(E ) = χπ(B)× χπ(Fb)

I If M is a compact CW-complex, B is HF space.
Then the function space below is HF

TOP(M,B) = {f : M → B | f is continuous}

In particular if M is a compact smooth manifold.
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Discussion
Quinn TQFT F (s)

B can be twisted by classes in Hn+1(B,U(1)).

I Let G be a finite group. Let B be the classifying space of G .

Then F (s)
B coincides with Dijkgraaf-Witten TQFT.

Explicitly calculable. Related to gauge theory.

Related to Kitaev Quantum double model.

I Let G be a finite 2 group. Let B be the classifying space of G.

F (s)
B coincides with (twisted) Yetter TQFT (Martins / Porter).

Explicitly calculable. Related to higher gauge theory.

Related to higher Kitaev models formulated with 2-groups.

I (Conjecture) If S is a HF simplicial groupoid
and B is the geometric realisation of W (S)

then F (s)
B coincides with Porter’s homotopy n-type TQFT.

Also explicitly / combinatorially calculable.
Conjecture implies all Quinn’s TQFTs F (s)

B are combinatorial.

I Quinn’s TQFT can naturally be ’extended’ (not in this talk).
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Detour: (Discrete) gauge theory and holonomy
I Let M be a manifold.
I A path in M is a piecewise smooth map γ : [0, 1]→ M.

We consider paths up to homotopy, relative to the end-points.

Paths γ1 and γ2 are homotopic.

I Denote paths as (x
γ−→ y), x and y are initial and end-points.

I Paths (x
γ−→ y) and (y

γ′−→ z) can be concatenated:

(x
γ−→ y)(y

γ′−→ z) = (x
γ γ′−−→ z).
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Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk).
Given a principal G -bundle P → M – i.e. a gauge field –,
we have the parallel transport (a.k.a. holonomy) of P:

F : {Paths in M} → G

γ 7−→ hol1(γ) = gγ ∈ G

Recall parallel transport preserves concatenation of paths:

F
(
(x

γ−→ y)(y
γ′−→ z)

)
= F(x

γ−→ y) F(y
γ′−→ z)

NB: must specify elements pv ∈ Fv , the fibre of P at each v ∈ M.

If G is a Lie group we need G -connection A. Locally A ∈ Ω1(M, g).



Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk).
Given a principal G -bundle P → M – i.e. a gauge field –,
we have the parallel transport (a.k.a. holonomy) of P:

F : {Paths in M} → G

γ 7−→ hol1(γ) = gγ ∈ G

Recall parallel transport preserves concatenation of paths:

F
(
(x

γ−→ y)(y
γ′−→ z)

)
= F(x

γ−→ y) F(y
γ′−→ z)

NB: must specify elements pv ∈ Fv , the fibre of P at each v ∈ M.

If G is a Lie group we need G -connection A. Locally A ∈ Ω1(M, g).



Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk).
Given a principal G -bundle P → M – i.e. a gauge field –,
we have the parallel transport (a.k.a. holonomy) of P:

F : {Paths in M} → G

γ 7−→ hol1(γ) = gγ ∈ G

Recall parallel transport preserves concatenation of paths:

F
(
(x

γ−→ y)(y
γ′−→ z)

)
= F(x

γ−→ y) F(y
γ′−→ z)

NB: must specify elements pv ∈ Fv , the fibre of P at each v ∈ M.

If G is a Lie group we need G -connection A. Locally A ∈ Ω1(M, g).



Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk).
Given a principal G -bundle P → M – i.e. a gauge field –,
we have the parallel transport (a.k.a. holonomy) of P:

F : {Paths in M} → G

γ 7−→ hol1(γ) = gγ ∈ G

Recall parallel transport preserves concatenation of paths:

F
(
(x

γ−→ y)(y
γ′−→ z)

)
= F(x

γ−→ y) F(y
γ′−→ z)

NB: must specify elements pv ∈ Fv , the fibre of P at each v ∈ M.

If G is a Lie group we need G -connection A. Locally A ∈ Ω1(M, g).



Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk).
Given a principal G -bundle P → M – i.e. a gauge field –,
we have the parallel transport (a.k.a. holonomy) of P:

F : {Paths in M} → G

γ 7−→ hol1(γ) = gγ ∈ G

Recall parallel transport preserves concatenation of paths:

F
(
(x

γ−→ y)(y
γ′−→ z)

)
= F(x

γ−→ y) F(y
γ′−→ z)

NB: must specify elements pv ∈ Fv , the fibre of P at each v ∈ M.

If G is a Lie group we need G -connection A. Locally A ∈ Ω1(M, g).



Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk).
Given a principal G -bundle P → M – i.e. a gauge field –,
we have the parallel transport (a.k.a. holonomy) of P:

F : {Paths in M} → G

γ 7−→ hol1(γ) = gγ ∈ G

Recall parallel transport preserves concatenation of paths:

F
(
(x

γ−→ y)(y
γ′−→ z)

)
= F(x

γ−→ y) F(y
γ′−→ z)

NB: must specify elements pv ∈ Fv , the fibre of P at each v ∈ M.

If G is a Lie group we need G -connection A. Locally A ∈ Ω1(M, g).



Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk).
Given a principal G -bundle P → M – i.e. a gauge field –,
we have the parallel transport (a.k.a. holonomy) of P:

F : {Paths in M} → G

γ 7−→ hol1(γ) = gγ ∈ G

Recall parallel transport preserves concatenation of paths:

F
(
(x

γ−→ y)(y
γ′−→ z)

)
= F(x

γ−→ y) F(y
γ′−→ z)

NB: must specify elements pv ∈ Fv , the fibre of P at each v ∈ M.

If G is a Lie group we need G -connection A. Locally A ∈ Ω1(M, g).



Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk).
Given a principal G -bundle P → M – i.e. a gauge field –,
we have the parallel transport (a.k.a. holonomy) of P:

F : {Paths in M} → G

γ 7−→ hol1(γ) = gγ ∈ G

Recall parallel transport preserves concatenation of paths:

F
(
(x

γ−→ y)(y
γ′−→ z)

)
= F(x

γ−→ y) F(y
γ′−→ z)

NB: must specify elements pv ∈ Fv , the fibre of P at each v ∈ M.

If G is a Lie group we need G -connection A. Locally A ∈ Ω1(M, g).



Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk).
Given a principal G -bundle P → M – i.e. a gauge field –,
we have the parallel transport (a.k.a. holonomy) of P:

F : {Paths in M} → G

γ 7−→ hol1(γ) = gγ ∈ G

Recall parallel transport preserves concatenation of paths:

F
(
(x

γ−→ y)(y
γ′−→ z)

)
= F(x

γ−→ y) F(y
γ′−→ z)

NB: must specify elements pv ∈ Fv , the fibre of P at each v ∈ M.

If G is a Lie group we need G -connection A. Locally A ∈ Ω1(M, g).



Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk).
Given a principal G -bundle P → M – i.e. a gauge field –,
we have the parallel transport (a.k.a. holonomy) of P:

F : {Paths in M} → G

γ 7−→ hol1(γ) = gγ ∈ G

Recall parallel transport preserves concatenation of paths:

F
(
(x

γ−→ y)(y
γ′−→ z)

)
= F(x

γ−→ y) F(y
γ′−→ z)

NB: must specify elements pv ∈ Fv , the fibre of P at each v ∈ M.

If G is a Lie group we need G -connection A. Locally A ∈ Ω1(M, g).



Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk).
Given a principal G -bundle P → M – i.e. a gauge field –,
we have the parallel transport (a.k.a. holonomy) of P:

F : {Paths in M} → G

γ 7−→ hol1(γ) = gγ ∈ G

Recall parallel transport preserves concatenation of paths:

F
(
(x

γ−→ y)(y
γ′−→ z)

)
= F(x

γ−→ y) F(y
γ′−→ z)

NB: must specify elements pv ∈ Fv , the fibre of P at each v ∈ M.

If G is a Lie group we need G -connection A. Locally A ∈ Ω1(M, g).



Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk).
Given a principal G -bundle P → M – i.e. a gauge field –,
we have the parallel transport (a.k.a. holonomy) of P:

F : {Paths in M} → G

γ 7−→ hol1(γ) = gγ ∈ G

Recall parallel transport preserves concatenation of paths:

F
(
(x

γ−→ y)(y
γ′−→ z)

)
= F(x

γ−→ y) F(y
γ′−→ z)

NB: must specify elements pv ∈ Fv , the fibre of P at each v ∈ M.

If G is a Lie group we need G -connection A. Locally A ∈ Ω1(M, g).



Gauge Theory and Holonomy

Conversely, G -connections can be defined from their holonomy.
Since G is finite, and M compact, to reconstruct the G -connection
we only need to know the holonomy along a finite number of paths.
The theory of gauge fields becomes combinatorial / discrete.
Combinatorially, a G -connection over M looks like:

a, b, c ,
d , e, f , g ∈ G .

Labels on edges denote holonomy along them.

Flatness conditions are satisfied on triangles:
the holonomy around each triangle is trivial.

abc = 1G
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‘Extension’ to discrete Higher Gauge Theory

I Higher gauge theory formalises non-abelian holonomy along
paths, and also non-abelian holonomy along surfaces.

I Non-abelian holonomy along surfaces is multiplicative with
respect to the several ways we can concatenate surfaces.

(This is why higher category theory arises here.)

I We need a higher order version of a group: called a “2-group”.

I 2-groups are equivalent to crossed modules.

A crossed module of groups G = (∂ : E → G , .) is given by:
I a group map ∂ : E → G ,
I and a left-action of G on E , by automorphisms, such that:

1. ∂(g . e) = g∂(e)g−1, if g ∈ G and e ∈ E ;

2. ∂(e) . e′ = ee′e−1, if e, e′ ∈ E .
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2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in G are:
associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

##//;;
%%// 88 =

##;;

does not depend on the order whereby it is performed.
As a consequence, evaluations of more complicated diagrams like:

## ��

00

//;;
$$##//;;
%%// 88 CC=

//

OO DD
##;;

do not depend on the order whereby we apply compositions.
This leads to a notion of non-abelian multiplication along surfaces.
This notion underpins surface-holonomy in higher gauge theory.
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2-dimensional holonomy

A geometric bigon on in a manifold M is given by:
Two paths γ, γ′ : [0, 1]→ M, with the same initial and end-point.
A homotopy (i.e. a ‘surface’) Σ: [0, 1]2 → M, connecting γ and γ′.
Σ is considered up to homotopy relative to ∂([0, 1]2).
Geometric bigons are represented as:

x

γ′

((

γ

66⇑ Σ y ,

Geometric bigons can be concatenated horizontally and vertically.

I Definition Let M be a manifold; G a crossed module.
A 2-dimensional holonomy (i.e. a higher gauge field) is a map:

{Geometric bigons in M} F−→ {Bigons in G}

Preserving horizontal and vertical compositions.
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2D holonomy along Σ

=

∂(eΣ)−1gγ2

''

gγ2

77⇑ eΣ ,

Note: for Lie crossed modules (∂ : E → G , .), 2-dimensional
holonomies arise from pairs A ∈ Ω1(M, g) and B ∈ Ω2(M, e),
with ∂(B) = CurvA = dA + 1

2 [A,A].
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Discrete surface holonomy
Let G = (∂ : E → G , .) be a crossed module.
Let M be a compact manifold, possibly with boundary.
Let L = (L0, L1, L2, L3 . . . ) be a CW-decomposition of M.
In HGT 3-cells b ∈ L3 (called blobs) have an important role.

A discrete 2-connection F is given by an assignment:

γ ∈ L1 7→ gγ ∈ G and P ∈ L2 7→ eP ∈ E ,

satisfying the fake-flatness condition, namely:
If we have a configuration like:

Then:

∂(eP) = g−1
γ4

gγ3gγ2gγ1 .
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Discrete surface holonomy
Let G = (∂ : E → G , .) be a crossed module.
Let Fbe a discrete 2-connection.

I Theorem Let Σ be a 2-sphere cellularly embedded in M,
v ∈ Σ, an ‘initial point’. We have a surface-holonomy:
Hol2v (F ,Σ) ∈ ker(∂) ⊂ E .
This surface-holonomy depends only on the starting point
v ∈ Σ, and not in the way whereby we combine 2-cells.

For example, consider the discrete 2-connection on the
tetrahedron Σ, below, based on the bottom left corner v0.

Then Hol2v0
(F ,Σ) = e1 e−1

2 e−1
3 g01 . e4
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Crossed complexes
A crossed complex is given by a complex

C := . . .
∂−→ Cn

∂−→ Cn−1
∂−→ . . . ...

∂−→ C2
∂−→ C1

of groupoids, all with object set C0. Such that:

I All groupoids for Ci , i ≥ 2 are totally disconnected.

I All boundary maps are the identity over the object C0.

I We have an action of C1 over on all groupoids Ci , i ≥ 2

I All boundary maps preserve the action.

I Peiffer 1: If x
g−→ y ∈ C1 and K ∈ C (y , y) then:

∂(g . K ) = g∂(K )g−1

I Peiffer 2: If K , L ∈ C2(y , y) then ∂(K ) . L = KLK−1

I The action of ∂(C2) is trivial on all groupoids Ci for i ≥ 3.

I Ci is abelian if i ≥ 3.
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Crossed complexes and ω-groupoids

Theorem (Brown–Higgins)

The category of crossed complexes is equivalent to the category of
strict ω-groupoids.

Proof has already been indicated for the 2-groupoid vs crossed
modules case.
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Fundamental crossed complexes and nerves

Theorem (Brown-Higgins)

Let X be a CW-complex. Then the sequence

Π(X ) := . . .
∂−→ πn(X n,X n−1,X 0)

∂−→ πn−1(X n−1,X n−2,X 0)

∂−→ . . . ...
∂−→ π2(X 2,X 1,X 0)

∂−→ π1(X 1,X 0)

is a totally free crossed complex with object set X0.

The nerve NC of the crossed complex

C = . . .
∂−→ Cn

∂−→ Cn−1
∂−→ . . . ...

∂−→ C2
∂−→ C1

is the simplicial sets given by all maps Π(∆(n))→ C.

Theorem (Brown-Higgins)

The homotopy groups of the realisation of NC coincide with the
homology groups of C.
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C-colourings (C a crossed complex)
Let M be a manifold with triangulation t.
Let Mt be corresponding CW-complex. Consider:

C = . . .
∂−→ Cn

∂−→ Cn−1
∂−→ . . . ...

∂−→ C2
∂−→ C1

Maps f : Π(Mt)→ C are in 1-to-1 correspondence with C-colorings:
I a map f0 : Vertices(Mt)→ C0

I a map f1 : edges(Mt)→ C1, looking like:

f0(v0)
f1(γ)−−−→ f0(v1) at each edge v0

γ−→ v1. of Mt

I a map f2 : triangles(Mt)→ C2, looking like:

f0(v0)

∂(f2(∆123))f1(γ02) ##

f1(γ01) //

f2(∆012)

f0(v1)

f1(γ12){{
f0(v2)

at each triangle v0

γ02
  

γ01 //

∆012

v1

γ12
~~

v2

Rule: boundary of element associated to a n + 1-simplex is the n dimensional

holonomy around boundary of simplex.
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Calculation of Quinn F (s)
B for B = |N(C)|.

Let C be a pointed homotopically finite crossed complex
Hence B := |NC| is a homotopically finite space.

Theorem (Martins/Porter (following Brown-Higgins))

Let A be a compact n-manifold with a triangulation t. Then

F (s)
B (A) = C(π0(CRS(Π(At), C)).

Here CRS( , ) is internal-hom in the cat. of crossed complexes.

In particular a basis of F (s)
B (A) consists of equivalence classes of

C-colourings of At up to ’gauge transformations’ of all orders.

Note CRS(Π(At), C) is the crossed complexes of all maps f : Π(At)→ C
and their homotopies / natural transformations of all orders.

This relates to GS degeneracy of higher Kitaev models.
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