TQFTS and models for topological phases derived from categorified gauge theory (higher gauge theory)

I ENCONTRO BRASILEIRO EM TEORIA DAS CATEGORIAS

João Faria Martins (University of Leeds)

27th January 2021

LEVERHULME
TRUST \qquad

Partially funded by the Leverhulme Trust research project grant: RPG-2018-029: "Emergent Physics From Lattice Models of Higher Gauge Theory" Thanks: T. Porter, P. Martin, F. Torzewska, A. Bullivant, Z. Kádár, M. Calçada

The category of manifold and cobordisms (sketch)

Consider the (symmmetric monoidal) category ($\mathrm{n}, \mathrm{n}+1$)-Cob.

Objects: $(n-1)$-compact manifolds A, B, \ldots

The category of manifold and cobordisms (sketch)
Consider the (symmmetric monoidal) category ($\mathbf{n}, \mathbf{n}+\mathbf{1}$)-Cob.

- Objects: $(n-1)$-compact manifolds A, B, \ldots

The category of manifold and cobordisms (sketch)

Consider the (symmmetric monoidal) category ($\mathbf{n}, \mathbf{n}+\mathbf{1}$)-Cob.

- Objects: $(n-1)$-compact manifolds A, B, \ldots

The category of manifold and cobordisms (sketch)

Consider the (symmmetric monoidal) category ($\mathbf{n}, \mathbf{n}+\mathbf{1}$)-Cob.

- Objects: ($n-1$)-compact manifolds A, B, \ldots
- Morphisms $[M]: A \rightarrow B$ are equivalence classes of diagrams:

The category of manifold and cobordisms (sketch)

Consider the (symmmetric monoidal) category ($\mathbf{n}, \mathbf{n}+\mathbf{1}$)-Cob.

- Objects: $(n-1)$-compact manifolds A, B, \ldots
- Morphisms [M]: $A \rightarrow B$ are equivalence classes of diagrams:

Where M is a smooth $(n-1)$-manifold, and

The category of manifold and cobordisms (sketch)

Consider the (symmmetric monoidal) category ($\mathbf{n}, \mathbf{n}+\mathbf{1}$)-Cob.

- Objects: $(n-1)$-compact manifolds A, B, \ldots
- Morphisms [M]: $A \rightarrow B$ are equivalence classes of diagrams:

Where M is a smooth ($n-1$)-manifold, and
i and j induce a diffeomorphism $\langle i, j\rangle: A \sqcup B \rightarrow \partial(M)$.

The category of manifold and cobordisms (sketch)

Consider the (symmmetric monoidal) category ($\mathbf{n}, \mathbf{n}+\mathbf{1}$)-Cob.

- Objects: ($n-1$)-compact manifolds A, B, \ldots
- Morphisms $[M]: A \rightarrow B$ are equivalence classes of diagrams:

Where M is a smooth $(n-1)$-manifold, and i and j induce a diffeomorphism $\langle i, j\rangle: A \sqcup B \rightarrow \partial(M)$.

The category of manifold and cobordisms (sketch)

Consider the (symmmetric monoidal) category ($\mathbf{n}, \mathbf{n}+\mathbf{1}$)-Cob.

- Objects: $(n-1)$-compact manifolds A, B, \ldots
- Morphisms $[M]: A \rightarrow B$ are equivalence classes of diagrams:

Where M is a smooth $(n-1)$-manifold, and i and j induce a diffeomorphism $\langle i, j\rangle: A \sqcup B \rightarrow \partial(M)$.

Visualization.

The category of manifold and cobordisms (sketch)

Consider the (symmmetric monoidal) category ($\mathbf{n}, \mathbf{n}+\mathbf{1}$)-Cob.

- Objects: $(n-1)$-compact manifolds A, B, \ldots
- Morphisms [M]: $A \rightarrow B$ are equivalence classes of diagrams:

Where M is a smooth $(n-1)$-manifold, and
i and j induce a diffeomorphism $\langle i, j\rangle: A \sqcup B \rightarrow \partial(M)$.

Composition of morphisms Issues with smooth structure.
Visualization.

Topological quantum field theories

Definition
Given a non-negative integer n, a Topological Quantum Field Theory (TQFT)

Topological quantum field theories

Definition
Given a non-negative integer n,
a Topological Quantum Field Theory (TQFT) is a symmetric monoidal functor:

Topological quantum field theories

Definition
Given a non-negative integer n,
a Topological Quantum Field Theory (TQFT)
s a symmetric monoidal functor:

Topological quantum field theories

Definition
Given a non-negative integer n,
a Topological Quantum Field Theory (TQFT)
is a symmetric monoidal functor:

Topological quantum field theories

Definition
Given a non-negative integer n,
a Topological Quantum Field Theory (TQFT)
is a symmetric monoidal functor:

$$
\mathcal{F}:(\mathbf{n}, \mathbf{n}+\mathbf{1})-\mathrm{Cob} \rightarrow \text { Vect }
$$

In this talk I will:

Topological quantum field theories

Definition
Given a non-negative integer n,
a Topological Quantum Field Theory (TQFT)
is a symmetric monoidal functor:

$$
\mathcal{F}:(\mathbf{n}, \mathbf{n}+\mathbf{1})-\mathrm{Cob} \rightarrow \text { Vect }
$$

In this talk I will:

Topological quantum field theories

Definition
Given a non-negative integer n,
a Topological Quantum Field Theory (TQFT)
is a symmetric monoidal functor:

$$
\mathcal{F}:(\mathbf{n}, \mathbf{n}+\mathbf{1})-\mathrm{Cob} \rightarrow \text { Vect }
$$

In this talk I will:

- Recall Quinn's total homotopy TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}:(\mathbf{n}, \mathbf{n}+\mathbf{1})$-Cob \rightarrow Vect (Here \mathbb{B} a homotopically finite space: a parameter of theory)

Topological quantum field theories

Definition

Given a non-negative integer n,
a Topological Quantum Field Theory (TQFT)
is a symmetric monoidal functor:

$$
\mathcal{F}:(\mathbf{n}, \mathbf{n}+\mathbf{1})-\mathrm{Cob} \rightarrow \text { Vect }
$$

In this talk I will:

- Recall Quinn's total homotopy TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}:(\mathbf{n}, \mathbf{n}+\mathbf{1})$-Cob \rightarrow Vect
(Here \mathbb{B} a homotopically finite space: a parameter of theory)
\Rightarrow Explain combinatorial calculation of $\mathcal{F}_{\mathbb{B}}^{(s)}$
if \mathbb{B} is the classifying space of a homotopy finite ω-groupoid.
- Relate to higher gauge theory.

Topological quantum field theories

Definition

Given a non-negative integer n,
a Topological Quantum Field Theory (TQFT)
is a symmetric monoidal functor:

$$
\mathcal{F}:(\mathbf{n}, \mathbf{n}+\mathbf{1})-\mathrm{Cob} \rightarrow \text { Vect }
$$

In this talk I will:

- Recall Quinn's total homotopy TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}:(\mathbf{n}, \mathbf{n}+\mathbf{1})$-Cob \rightarrow Vect
(Here \mathbb{B} a homotopically finite space: a parameter of theory)
- Explain combinatorial calculation of $\mathcal{F}_{\mathbb{B}}^{(s)}$
if \mathbb{B} is the classifying space of a homotopy finite ω-groupoid.
- Relate to higher gauge theory.

Topological quantum field theories

Definition

Given a non-negative integer n,
a Topological Quantum Field Theory (TQFT)
is a symmetric monoidal functor:

$$
\mathcal{F}:(\mathbf{n}, \mathbf{n}+\mathbf{1})-\mathrm{Cob} \rightarrow \text { Vect }
$$

In this talk I will:

- Recall Quinn's total homotopy TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}:(\mathbf{n}, \mathbf{n}+\mathbf{1})$-Cob \rightarrow Vect
(Here \mathbb{B} a homotopically finite space: a parameter of theory)
- Explain combinatorial calculation of $\mathcal{F}_{\mathbb{B}}^{(s)}$ if \mathbb{B} is the classifying space of a homotopy finite ω-groupoid.
- Relate to higher gauge theory.

Topological quantum field theories

Definition

Given a non-negative integer n,
a Topological Quantum Field Theory (TQFT)
is a symmetric monoidal functor:

$$
\mathcal{F}:(\mathbf{n}, \mathbf{n}+\mathbf{1})-\mathrm{Cob} \rightarrow \text { Vect }
$$

In this talk I will:

- Recall Quinn's total homotopy TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}:(\mathbf{n}, \mathbf{n}+\mathbf{1})$-Cob \rightarrow Vect
(Here \mathbb{B} a homotopically finite space: a parameter of theory)
- Explain combinatorial calculation of $\mathcal{F}_{\mathbb{B}}^{(s)}$
if \mathbb{B} is the classifying space of a homotopy finite ω-groupoid.
- Relate to higher gauge theory.
- In passing mention higher Kitaev models; cf. Teotónio's talk.

Homotopy finite spaces (or simplicial sets)

Definition
A space X is homotopy finite (HF) if:

Homotopy finite spaces (or simplicial sets)

Definition
A space X is homotopy finite (HF) if:
$\rightarrow X$ has only a finite number of path components.

Homotopy finite spaces (or simplicial sets)

Definition
A space X is homotopy finite (HF) if:

- X has only a finite number of path components.

Homotopy finite spaces (or simplicial sets)

Definition

A space X is homotopy finite (HF) if:

- X has only a finite number of path components.
- If $K \in \pi_{0}(X)$ - set of path components of X - then $\pi_{i}(K)$ is:

Homotopy finite spaces (or simplicial sets)

Definition

A space X is homotopy finite (HF) if:

- X has only a finite number of path components.
- If $K \in \pi_{0}(X)$ - set of path components of X - then $\pi_{i}(K)$ is:
- trivial if $i>n$, for some n.

Homotopy finite spaces (or simplicial sets)

Definition

A space X is homotopy finite (HF) if:

- X has only a finite number of path components.
- If $K \in \pi_{0}(X)$ - set of path components of X - then $\pi_{i}(K)$ is:
- trivial if $i>n$, for some n.
- finite for all i.

If X is HF, the homotopy content of X is:

Homotopy finite spaces (or simplicial sets)

Definition

A space X is homotopy finite (HF) if:

- X has only a finite number of path components.
- If $K \in \pi_{0}(X)$ - set of path components of X - then $\pi_{i}(K)$ is:
- trivial if $i>n$, for some n.
- finite for all i.

If X is HF, the homotopy content of X is:

Homotopy finite spaces (or simplicial sets)

Definition

A space X is homotopy finite (HF) if:

- X has only a finite number of path components.
- If $K \in \pi_{0}(X)$ - set of path components of X - then $\pi_{i}(K)$ is:
- trivial if $i>n$, for some n.
- finite for all i.

If X is HF, the homotopy content of X is:

$$
\chi^{\pi}=\sum_{K \in \pi_{0}} \frac{\left|\pi_{2}(K)\right|\left|\pi_{4}(K)\right|\left|\pi_{6}(K)\right| \ldots}{\left|\pi_{1}(K)\right|\left|\pi_{3}(K)\right|\left|\pi_{5}(K)\right| \ldots} \in \mathbb{Q}
$$

First appeared (I think) in:

Homotopy finite spaces (or simplicial sets)

Definition

A space X is homotopy finite (HF) if:

- X has only a finite number of path components.
- If $K \in \pi_{0}(X)$ - set of path components of X - then $\pi_{i}(K)$ is:
- trivial if $i>n$, for some n.
- finite for all i.

If X is HF, the homotopy content of X is:

$$
\chi^{\pi}=\sum_{K \in \pi_{0}} \frac{\left|\pi_{2}(K)\right|\left|\pi_{4}(K)\right|\left|\pi_{6}(K)\right| \ldots}{\left|\pi_{1}(K)\right|\left|\pi_{3}(K)\right|\left|\pi_{5}(K)\right| \ldots} \in \mathbb{Q}
$$

First appeared (I think) in:
Frank Quinn. Lectures on axiomatic topological quantum field theory. In Geometry and quantum field theory. (1995)

Homotopy finite spaces (or simplicial sets)

Definition

A space X is homotopy finite (HF) if:

- X has only a finite number of path components.
- If $K \in \pi_{0}(X)$ - set of path components of X - then $\pi_{i}(K)$ is:
- trivial if $i>n$, for some n.
- finite for all i.

If X is HF, the homotopy content of X is:

$$
\chi^{\pi}=\sum_{K \in \pi_{0}} \frac{\left|\pi_{2}(K)\right|\left|\pi_{4}(K)\right|\left|\pi_{6}(K)\right| \ldots}{\left|\pi_{1}(K)\right|\left|\pi_{3}(K)\right|\left|\pi_{5}(K)\right| \ldots} \in \mathbb{Q}
$$

First appeared (I think) in:
Frank Quinn. Lectures on axiomatic topological quantum field theory. In Geometry and quantum field theory. (1995)

Homotopy finite spaces (or simplicial sets)

Definition

A space X is homotopy finite (HF) if:

- X has only a finite number of path components.
- If $K \in \pi_{0}(X)$ - set of path components of X - then $\pi_{i}(K)$ is:
- trivial if $i>n$, for some n.
- finite for all i.

If X is HF, the homotopy content of X is:

$$
\chi^{\pi}=\sum_{K \in \pi_{0}} \frac{\left|\pi_{2}(K)\right|\left|\pi_{4}(K)\right|\left|\pi_{6}(K)\right| \ldots}{\left|\pi_{1}(K)\right|\left|\pi_{3}(K)\right|\left|\pi_{5}(K)\right| \ldots} \in \mathbb{Q}
$$

First appeared (I think) in:
Frank Quinn. Lectures on axiomatic topological quantum field theory. In Geometry and quantum field theory. (1995) John C. Baez and James Dolan. From finite sets to Feynman diagrams. In Mathematics unlimited-2001 and beyond (2001)

Notes about homotopically finite spaces

- If X and Y are HF then so are $X X Y$ and $X \sqcup Y$, and:

Notes about homotopically finite spaces

- If X and Y are HF then so are $X \times Y$ and $X \sqcup Y$, and:

Notes about homotopically finite spaces

- If X and Y are HF then so are $X \times Y$ and $X \sqcup Y$, and:

$$
\chi^{\pi}(X \times Y)=\chi^{\pi}(X) \times \chi^{\pi}(Y)
$$

- If $p: E \rightarrow B$ is a (Hurewicz) fibration of HF spaces

Notes about homotopically finite spaces

- If X and Y are HF then so are $X \times Y$ and $X \sqcup Y$, and:

$$
\begin{aligned}
& \chi^{\pi}(X \times Y)=\chi^{\pi}(X) \times \chi^{\pi}(Y) \\
& \chi^{\pi}(X \sqcup Y)=\chi^{\pi}(X)+\chi^{\pi}(Y)
\end{aligned}
$$

- If $p: E \rightarrow B$ is a (Hurewicz) fibration of HF spaces B path-connected,

Notes about homotopically finite spaces

- If X and Y are HF then so are $X \times Y$ and $X \sqcup Y$, and:

$$
\begin{aligned}
& \chi^{\pi}(X \times Y)=\chi^{\pi}(X) \times \chi^{\pi}(Y) \\
& \chi^{\pi}(X \sqcup Y)=\chi^{\pi}(X)+\chi^{\pi}(Y)
\end{aligned}
$$

- If $p: E \rightarrow B$ is a (Hurewicz) fibration of HF spaces

Notes about homotopically finite spaces

- If X and Y are HF then so are $X \times Y$ and $X \sqcup Y$, and:

$$
\begin{aligned}
& \chi^{\pi}(X \times Y)=\chi^{\pi}(X) \times \chi^{\pi}(Y) \\
& \chi^{\pi}(X \sqcup Y)=\chi^{\pi}(X)+\chi^{\pi}(Y)
\end{aligned}
$$

- If $p: E \rightarrow B$ is a (Hurewicz) fibration of HF spaces B path-connected, $b \in B, F_{b}=p^{-1}(b)$:

Notes about homotopically finite spaces

- If X and Y are HF then so are $X \times Y$ and $X \sqcup Y$, and:

$$
\begin{aligned}
& \chi^{\pi}(X \times Y)=\chi^{\pi}(X) \times \chi^{\pi}(Y) \\
& \chi^{\pi}(X \sqcup Y)=\chi^{\pi}(X)+\chi^{\pi}(Y)
\end{aligned}
$$

- If $p: E \rightarrow B$ is a (Hurewicz) fibration of HF spaces B path-connected, $b \in B, F_{b}=p^{-1}(b)$:
- If M is a compact CW-complex, \mathbb{B} is HF space.

Notes about homotopically finite spaces

- If X and Y are HF then so are $X \times Y$ and $X \sqcup Y$, and:

$$
\begin{aligned}
& \chi^{\pi}(X \times Y)=\chi^{\pi}(X) \times \chi^{\pi}(Y) \\
& \chi^{\pi}(X \sqcup Y)=\chi^{\pi}(X)+\chi^{\pi}(Y)
\end{aligned}
$$

- If $p: E \rightarrow B$ is a (Hurewicz) fibration of HF spaces
B path-connected, $b \in B, F_{b}=p^{-1}(b)$:

$$
\chi^{\pi}(E)=\chi^{\pi}(B) \times \chi^{\pi}\left(F_{b}\right)
$$

- If M is a compact CW-complex, \mathbb{B} is HF space. Then the function space below is HF

Notes about homotopically finite spaces

- If X and Y are HF then so are $X \times Y$ and $X \sqcup Y$, and:

$$
\begin{aligned}
& \chi^{\pi}(X \times Y)=\chi^{\pi}(X) \times \chi^{\pi}(Y) \\
& \chi^{\pi}(X \sqcup Y)=\chi^{\pi}(X)+\chi^{\pi}(Y)
\end{aligned}
$$

- If $p: E \rightarrow B$ is a (Hurewicz) fibration of HF spaces
B path-connected, $b \in B, F_{b}=p^{-1}(b)$:

$$
\chi^{\pi}(E)=\chi^{\pi}(B) \times \chi^{\pi}\left(F_{b}\right)
$$

- If M is a compact CW-complex, \mathbb{B} is HF space.

Notes about homotopically finite spaces

- If X and Y are HF then so are $X \times Y$ and $X \sqcup Y$, and:

$$
\begin{aligned}
& \chi^{\pi}(X \times Y)=\chi^{\pi}(X) \times \chi^{\pi}(Y) \\
& \chi^{\pi}(X \sqcup Y)=\chi^{\pi}(X)+\chi^{\pi}(Y)
\end{aligned}
$$

- If $p: E \rightarrow B$ is a (Hurewicz) fibration of HF spaces
B path-connected, $b \in B, F_{b}=p^{-1}(b)$:

$$
\chi^{\pi}(E)=\chi^{\pi}(B) \times \chi^{\pi}\left(F_{b}\right)
$$

- If M is a compact CW-complex, \mathbb{B} is HF space.

Then the function space below is HF

Notes about homotopically finite spaces

- If X and Y are HF then so are $X \times Y$ and $X \sqcup Y$, and:

$$
\begin{aligned}
& \chi^{\pi}(X \times Y)=\chi^{\pi}(X) \times \chi^{\pi}(Y) \\
& \chi^{\pi}(X \sqcup Y)=\chi^{\pi}(X)+\chi^{\pi}(Y)
\end{aligned}
$$

- If $p: E \rightarrow B$ is a (Hurewicz) fibration of HF spaces
B path-connected, $b \in B, F_{b}=p^{-1}(b)$:

$$
\chi^{\pi}(E)=\chi^{\pi}(B) \times \chi^{\pi}\left(F_{b}\right)
$$

- If M is a compact CW-complex, \mathbb{B} is HF space.

Then the function space below is HF

$$
\operatorname{TOP}(M, \mathbb{B})=\{f: M \rightarrow \mathbb{B} \mid f \text { is continuous }\}
$$

Notes about homotopically finite spaces

- If X and Y are HF then so are $X \times Y$ and $X \sqcup Y$, and:

$$
\begin{aligned}
& \chi^{\pi}(X \times Y)=\chi^{\pi}(X) \times \chi^{\pi}(Y) \\
& \chi^{\pi}(X \sqcup Y)=\chi^{\pi}(X)+\chi^{\pi}(Y)
\end{aligned}
$$

- If $p: E \rightarrow B$ is a (Hurewicz) fibration of HF spaces
B path-connected, $b \in B, F_{b}=p^{-1}(b)$:

$$
\chi^{\pi}(E)=\chi^{\pi}(B) \times \chi^{\pi}\left(F_{b}\right)
$$

- If M is a compact CW-complex, \mathbb{B} is HF space. Then the function space below is HF

$$
\operatorname{TOP}(M, \mathbb{B})=\{f: M \rightarrow \mathbb{B} \mid f \text { is continuous }\}
$$

In particular if M is a compact smooth manifold.

Quinn's (total homotopy) TQFT

Let \mathbb{B} be a HF-space. Let $s \in \mathbb{C}$.
We define a functor: $\mathcal{F}_{\mathbb{B}}^{(s)}:(\mathrm{n}, \mathrm{n}+\mathbf{1})$-Cob \rightarrow Vect

- If A is an n-manifold then:

Quinn's (total homotopy) TQFT

Let \mathbb{B} be a HF-space. Let $s \in \mathbb{C}$.
We define a functor: $\mathcal{F}_{\mathbb{B}}^{(s)}:(\mathbf{n}, \mathbf{n}+\mathbf{1})$-Cob \rightarrow Vect
\rightarrow If A is an n-manifold then:

Quinn's (total homotopy) TQFT

Let \mathbb{B} be a HF-space. Let $s \in \mathbb{C}$.
We define a functor: $\mathcal{F}_{\mathbb{B}}^{(s)}:(\mathbf{n}, \mathbf{n}+\mathbf{1})$-Cob \rightarrow Vect

- If A is an n-manifold then:

$$
\left.\mathcal{F}_{\mathbb{B}}^{(s)}(A)=\mathbb{C}([A, \mathbb{B}])\right)=\mathbb{C}\left(\pi_{0}(\operatorname{TOP}(A, \mathbb{B}))\right.
$$

Quinn's (total homotopy) TQFT

Let \mathbb{B} be a HF-space. Let $s \in \mathbb{C}$.
We define a functor: $\mathcal{F}_{\mathbb{B}}^{(s)}:(\mathbf{n}, \mathbf{n}+\mathbf{1})$-Cob \rightarrow Vect

- If A is an n-manifold then:

$$
\left.\mathcal{F}_{\mathbb{B}}^{(s)}(A)=\mathbb{C}([A, \mathbb{B}])\right)=\mathbb{C}\left(\pi_{0}(\operatorname{TOP}(A, \mathbb{B}))\right.
$$

- Matrix elements assigned to cobordisms A

Quinn's (total homotopy) TQFT

Let \mathbb{B} be a HF-space. Let $s \in \mathbb{C}$.
We define a functor: $\mathcal{F}_{\mathbb{B}}^{(s)}:(\mathbf{n}, \mathbf{n}+\mathbf{1})$-Cob \rightarrow Vect

- If A is an n-manifold then:

$$
\left.\mathcal{F}_{\mathbb{B}}^{(s)}(A)=\mathbb{C}([A, \mathbb{B}])\right)=\mathbb{C}\left(\pi_{0}(\operatorname{TOP}(A, \mathbb{B}))\right.
$$

- Matrix elements assigned to cobordisms A

Quinn's (total homotopy) TQFT

Let \mathbb{B} be a HF-space. Let $s \in \mathbb{C}$.
We define a functor: $\mathcal{F}_{\mathbb{B}}^{(s)}:(\mathbf{n}, \mathbf{n}+\mathbf{1})$-Cob \rightarrow Vect

- If A is an n-manifold then:

$$
\left.\mathcal{F}_{\mathbb{B}}^{(s)}(A)=\mathbb{C}([A, \mathbb{B}])\right)=\mathbb{C}\left(\pi_{0}(\operatorname{TOP}(A, \mathbb{B}))\right.
$$

- Matrix elements assigned to cobordisms A

$\langle[f]| F_{\mathbb{B}}^{(s)}(M)\left|\left[f^{\prime}\right]\right\rangle$

Quinn's (total homotopy) TQFT

Let \mathbb{B} be a HF-space. Let $s \in \mathbb{C}$.
We define a functor: $\mathcal{F}_{\mathbb{B}}^{(s)}:(\mathbf{n}, \mathbf{n}+\mathbf{1})$-Cob \rightarrow Vect

- If A is an n-manifold then:

$$
\left.\mathcal{F}_{\mathbb{B}}^{(s)}(A)=\mathbb{C}([A, \mathbb{B}])\right)=\mathbb{C}\left(\pi_{0}(\operatorname{TOP}(A, \mathbb{B}))\right.
$$

- Matrix elements assigned to cobordisms A

$$
\langle[f]| F_{\mathbb{B}}^{(s)}(M)\left|\left[f^{\prime}\right]\right\rangle
$$

Quinn's (total homotopy) TQFT

Let \mathbb{B} be a HF-space. Let $s \in \mathbb{C}$.
We define a functor: $\mathcal{F}_{\mathbb{B}}^{(s)}:(\mathbf{n}, \mathbf{n}+\mathbf{1})$-Cob \rightarrow Vect

- If A is an n-manifold then:

$$
\left.\mathcal{F}_{\mathbb{B}}^{(s)}(A)=\mathbb{C}([A, \mathbb{B}])\right)=\mathbb{C}\left(\pi_{0}(\operatorname{TOP}(A, \mathbb{B}))\right.
$$

- Matrix elements assigned to cobordisms A

$$
\left\langle\left[F\left|\left.\right|_{F_{B}^{(s)}} ^{(s)}(M)\right|\left[f^{f}\right\rangle\right\rangle=-\{H: M \rightarrow B\right.
$$

Quinn's (total homotopy) TQFT

Let \mathbb{B} be a HF-space. Let $s \in \mathbb{C}$.
We define a functor: $\mathcal{F}_{\mathbb{B}}^{(s)}:(\mathbf{n}, \mathbf{n}+\mathbf{1})$-Cob \rightarrow Vect

- If A is an n-manifold then:

$$
\left.\mathcal{F}_{\mathbb{B}}^{(s)}(A)=\mathbb{C}([A, \mathbb{B}])\right)=\mathbb{C}\left(\pi_{0}(\operatorname{TOP}(A, \mathbb{B}))\right.
$$

\checkmark Matrix elements assigned to cobordisms A

Quinn's (total homotopy) TQFT

Let \mathbb{B} be a HF-space. Let $s \in \mathbb{C}$.
We define a functor: $\mathcal{F}_{\mathbb{B}}^{(s)}:(\mathbf{n}, \mathbf{n}+\mathbf{1})$-Cob \rightarrow Vect

- If A is an n-manifold then:

$$
\left.\mathcal{F}_{\mathbb{B}}^{(s)}(A)=\mathbb{C}([A, \mathbb{B}])\right)=\mathbb{C}\left(\pi_{0}(\operatorname{TOP}(A, \mathbb{B}))\right.
$$

- Matrix elements assigned to cobordisms A

$$
\langle[f]| \mathcal{F}_{\mathbb{B}}^{(s)}(M)\left|\left[f^{\prime}\right]\right\rangle=\chi^{\pi}\{H: M \rightarrow \mathbb{B}: \underbrace{A}_{\mathbb{B}}
$$

$$
\times\left(\chi^{\pi}\left(\mathrm{PC}_{f}(\operatorname{TOP}(A, \mathbb{B}))\right)\right)^{s}\left(\chi^{\pi}\left(\mathrm{PC}_{f^{\prime}}(\operatorname{TOP}(B, \mathbb{B}))\right)\right)^{1-s}
$$

Discussion

Quinn TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}$ can be twisted by classes in $H^{n+1}(\mathbb{B}, U(1))$.

- Let G be a finite group. Let \mathbb{B} be the classifying space of G. Then $\mathcal{F}_{\mathbb{R}}^{(s)}$ coincides with Dijkgraaf-Witten TQFT

Discussion

Quinn TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}$ can be twisted by classes in $H^{n+1}(\mathbb{B}, U(1))$.

$>$ Let G be a finite group. Let \mathbb{B} be the classifying space of G Then $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with Dijkgraaf-Witten TQFT

Discussion

Quinn TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}$ can be twisted by classes in $H^{n+1}(\mathbb{B}, U(1))$.

- Let G be a finite group. Let \mathbb{B} be the classifying space of G. Then $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with Dijkgraaf-Witten TQFT.

Discussion

Quinn TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}$ can be twisted by classes in $H^{n+1}(\mathbb{B}, U(1))$.

- Let G be a finite group. Let \mathbb{B} be the classifying space of G. Then $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with Dijkgraaf-Witten TQFT.

Discussion

Quinn TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}$ can be twisted by classes in $H^{n+1}(\mathbb{B}, U(1))$.

- Let G be a finite group. Let \mathbb{B} be the classifying space of G. Then $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with Dijkgraaf-Witten TQFT.

Explicitly calculable. Related to gauge theory.

Discussion

Quinn TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}$ can be twisted by classes in $H^{n+1}(\mathbb{B}, U(1))$.

- Let G be a finite group. Let \mathbb{B} be the classifying space of G. Then $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with Dijkgraaf-Witten TQFT.

Explicitly calculable. Related to gauge theory.

Discussion

Quinn TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}$ can be twisted by classes in $H^{n+1}(\mathbb{B}, U(1))$.

- Let G be a finite group. Let \mathbb{B} be the classifying space of G. Then $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with Dijkgraaf-Witten TQFT.

Explicitly calculable. Related to gauge theory. Related to Kitaev Quantum double model.

Discussion

Quinn TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}$ can be twisted by classes in $H^{n+1}(\mathbb{B}, U(1))$.

- Let G be a finite group. Let \mathbb{B} be the classifying space of G. Then $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with Dijkgraaf-Witten TQFT.

Explicitly calculable. Related to gauge theory. Related to Kitaev Quantum double model.

- Let \mathcal{G} be a finite 2 group. Let \mathbb{B} be the classifying space of \mathcal{G}

Discussion

Quinn TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}$ can be twisted by classes in $H^{n+1}(\mathbb{B}, U(1))$.

- Let G be a finite group. Let \mathbb{B} be the classifying space of G. Then $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with Dijkgraaf-Witten TQFT.

Explicitly calculable. Related to gauge theory.
Related to Kitaev Quantum double model.

- Let \mathcal{G} be a finite 2 group. Let \mathbb{B} be the classifying space of \mathcal{G}.
coincides with (twisted) Yetter TQFT (Martins / Porter).

Discussion

Quinn TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}$ can be twisted by classes in $H^{n+1}(\mathbb{B}, U(1))$.

- Let G be a finite group. Let \mathbb{B} be the classifying space of G. Then $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with Dijkgraaf-Witten TQFT.

Explicitly calculable. Related to gauge theory. Related to Kitaev Quantum double model.

- Let \mathcal{G} be a finite 2 group. Let \mathbb{B} be the classifying space of \mathcal{G}. $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with (twisted) Yetter TQFT (Martins / Porter).

Discussion

Quinn TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}$ can be twisted by classes in $H^{n+1}(\mathbb{B}, U(1))$.

- Let G be a finite group. Let \mathbb{B} be the classifying space of G. Then $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with Dijkgraaf-Witten TQFT.

Explicitly calculable. Related to gauge theory. Related to Kitaev Quantum double model.

- Let \mathcal{G} be a finite 2 group. Let \mathbb{B} be the classifying space of \mathcal{G}. $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with (twisted) Yetter TQFT (Martins / Porter).

Explicitly calculable.

Discussion

Quinn TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}$ can be twisted by classes in $H^{n+1}(\mathbb{B}, U(1))$.

- Let G be a finite group. Let \mathbb{B} be the classifying space of G. Then $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with Dijkgraaf-Witten TQFT.

Explicitly calculable. Related to gauge theory. Related to Kitaev Quantum double model.

- Let \mathcal{G} be a finite 2 group. Let \mathbb{B} be the classifying space of \mathcal{G}. $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with (twisted) Yetter TQFT (Martins / Porter).

Explicitly calculable. Related to higher gauge theory.

Discussion

Quinn TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}$ can be twisted by classes in $H^{n+1}(\mathbb{B}, U(1))$.

- Let G be a finite group. Let \mathbb{B} be the classifying space of G. Then $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with Dijkgraaf-Witten TQFT.

Explicitly calculable. Related to gauge theory. Related to Kitaev Quantum double model.

- Let \mathcal{G} be a finite 2 group. Let \mathbb{B} be the classifying space of \mathcal{G}. $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with (twisted) Yetter TQFT (Martins / Porter).

Explicitly calculable. Related to higher gauge theory.
Related to higher Kitaev models formulated with 2-groups.

- (Conjecture) If \mathcal{S} is a HF simplicial groupoid

Discussion

Quinn TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}$ can be twisted by classes in $H^{n+1}(\mathbb{B}, U(1))$.

- Let G be a finite group. Let \mathbb{B} be the classifying space of G. Then $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with Dijkgraaf-Witten TQFT.

Explicitly calculable. Related to gauge theory. Related to Kitaev Quantum double model.

- Let \mathcal{G} be a finite 2 group. Let \mathbb{B} be the classifying space of \mathcal{G}. $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with (twisted) Yetter TQFT (Martins / Porter).

Explicitly calculable. Related to higher gauge theory.
Related to higher Kitaev models formulated with 2-groups.

- (Conjecture) If \mathcal{S} is a HF simplicial groupoid

Discussion

Quinn TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}$ can be twisted by classes in $H^{n+1}(\mathbb{B}, U(1))$.

- Let G be a finite group. Let \mathbb{B} be the classifying space of G. Then $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with Dijkgraaf-Witten TQFT.

Explicitly calculable. Related to gauge theory. Related to Kitaev Quantum double model.

- Let \mathcal{G} be a finite 2 group. Let \mathbb{B} be the classifying space of \mathcal{G}. $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with (twisted) Yetter TQFT (Martins / Porter).

Explicitly calculable. Related to higher gauge theory.
Related to higher Kitaev models formulated with 2-groups.

- (Conjecture) If \mathcal{S} is a HF simplicial groupoid and \mathbb{B} is the geometric realisation of $\bar{W}(\mathcal{S})$
then $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with Porter's homotopy n-type TQFT.

Discussion

Quinn TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}$ can be twisted by classes in $H^{n+1}(\mathbb{B}, U(1))$.

- Let G be a finite group. Let \mathbb{B} be the classifying space of G. Then $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with Dijkgraaf-Witten TQFT.

Explicitly calculable. Related to gauge theory. Related to Kitaev Quantum double model.

- Let \mathcal{G} be a finite 2 group. Let \mathbb{B} be the classifying space of \mathcal{G}. $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with (twisted) Yetter TQFT (Martins / Porter).

Explicitly calculable. Related to higher gauge theory.
Related to higher Kitaev models formulated with 2-groups.

- (Conjecture) If \mathcal{S} is a HF simplicial groupoid and \mathbb{B} is the geometric realisation of $\bar{W}(\mathcal{S})$
then $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with Porter's homotopy n-type TQFT.

Discussion

Quinn TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}$ can be twisted by classes in $H^{n+1}(\mathbb{B}, U(1))$.

- Let G be a finite group. Let \mathbb{B} be the classifying space of G. Then $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with Dijkgraaf-Witten TQFT.

Explicitly calculable. Related to gauge theory. Related to Kitaev Quantum double model.

- Let \mathcal{G} be a finite 2 group. Let \mathbb{B} be the classifying space of \mathcal{G}. $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with (twisted) Yetter TQFT (Martins / Porter).

Explicitly calculable. Related to higher gauge theory.
Related to higher Kitaev models formulated with 2-groups.

- (Conjecture) If \mathcal{S} is a HF simplicial groupoid and \mathbb{B} is the geometric realisation of $\bar{W}(\mathcal{S})$
then $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with Porter's homotopy n-type TQFT.
Also explicitly / combinatorially calculable.

Discussion

Quinn TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}$ can be twisted by classes in $H^{n+1}(\mathbb{B}, U(1))$.

- Let G be a finite group. Let \mathbb{B} be the classifying space of G. Then $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with Dijkgraaf-Witten TQFT.

Explicitly calculable. Related to gauge theory. Related to Kitaev Quantum double model.

- Let \mathcal{G} be a finite 2 group. Let \mathbb{B} be the classifying space of \mathcal{G}. $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with (twisted) Yetter TQFT (Martins / Porter).

Explicitly calculable. Related to higher gauge theory.
Related to higher Kitaev models formulated with 2-groups.

- (Conjecture) If \mathcal{S} is a HF simplicial groupoid and \mathbb{B} is the geometric realisation of $\bar{W}(\mathcal{S})$ then $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with Porter's homotopy n-type TQFT.

Also explicitly / combinatorially calculable.
Conjecture implies all Quinn's TQFTs $\mathcal{F}_{\mathbb{B}}^{(s)}$ are combinatorial.

Discussion

Quinn TQFT $\mathcal{F}_{\mathbb{B}}^{(s)}$ can be twisted by classes in $H^{n+1}(\mathbb{B}, U(1))$.

- Let G be a finite group. Let \mathbb{B} be the classifying space of G. Then $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with Dijkgraaf-Witten TQFT.

Explicitly calculable. Related to gauge theory. Related to Kitaev Quantum double model.

- Let \mathcal{G} be a finite 2 group. Let \mathbb{B} be the classifying space of \mathcal{G}. $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with (twisted) Yetter TQFT (Martins / Porter).

Explicitly calculable. Related to higher gauge theory.
Related to higher Kitaev models formulated with 2-groups.

- (Conjecture) If \mathcal{S} is a HF simplicial groupoid and \mathbb{B} is the geometric realisation of $\bar{W}(\mathcal{S})$ then $\mathcal{F}_{\mathbb{B}}^{(s)}$ coincides with Porter's homotopy n-type TQFT.

Also explicitly / combinatorially calculable. Conjecture implies all Quinn's TQFTs $\mathcal{F}_{\mathbb{B}}^{(s)}$ are combinatorial.

- Quinn's TQFT can naturally be 'extended' (not in this talk).

Detour: (Discrete) gauge theory and holonomy

- Let M be a manifold.

Detour: (Discrete) gauge theory and holonomy

- Let M be a manifold.
- A path in M is a piecewise smooth map $\gamma:[0,1] \rightarrow M$. We consider paths up to homotopy, relative to the end-points.

Detour: (Discrete) gauge theory and holonomy

- Let M be a manifold.
- A path in M is a piecewise smooth map $\gamma:[0,1] \rightarrow M$. We consider paths up to homotopy, relative to the end-points.
- Denote paths as $(x \rightarrow y)$,

Detour: (Discrete) gauge theory and holonomy

- Let M be a manifold.
- A path in M is a piecewise smooth map $\gamma:[0,1] \rightarrow M$. We consider paths up to homotopy, relative to the end-points.

Paths γ_{1} and γ_{2} are homotopic.

- Denote paths as $(x \xrightarrow{\gamma} y)$,

Detour: (Discrete) gauge theory and holonomy

- Let M be a manifold.
- A path in M is a piecewise smooth map $\gamma:[0,1] \rightarrow M$. We consider paths up to homotopy, relative to the end-points.

Paths γ_{1} and γ_{2} are homotopic.

Detour: (Discrete) gauge theory and holonomy

- Let M be a manifold.
- A path in M is a piecewise smooth map $\gamma:[0,1] \rightarrow M$. We consider paths up to homotopy, relative to the end-points.

Paths γ_{1} and γ_{2} are homotopic.

Detour: (Discrete) gauge theory and holonomy

- Let M be a manifold.
- A path in M is a piecewise smooth map $\gamma:[0,1] \rightarrow M$. We consider paths up to homotopy, relative to the end-points.

Paths γ_{1} and γ_{2} are homotopic.

- Denote paths as $(x \xrightarrow{\gamma} y), x$ and y are initial and end-points. Paths $(x \rightarrow y)$ and $(y \rightarrow z)$ can be concatenated:

Detour: (Discrete) gauge theory and holonomy

- Let M be a manifold.
- A path in M is a piecewise smooth map $\gamma:[0,1] \rightarrow M$. We consider paths up to homotopy, relative to the end-points.

Paths γ_{1} and γ_{2} are homotopic.

- Denote paths as $(x \xrightarrow{\gamma} y), x$ and y are initial and end-points.
\Rightarrow Paths $(x \xrightarrow{\gamma} y)$ and $(y \xrightarrow{\gamma} z)$ can be concatenated:

Detour: (Discrete) gauge theory and holonomy

- Let M be a manifold.
- A path in M is a piecewise smooth map $\gamma:[0,1] \rightarrow M$. We consider paths up to homotopy, relative to the end-points.

Paths γ_{1} and γ_{2} are homotopic.

- Denote paths as $(x \xrightarrow{\gamma} y), x$ and y are initial and end-points.
- Paths $(x \xrightarrow{\gamma} y)$ and $\left(y \xrightarrow{\gamma^{\prime}} z\right)$ can be concatenated:

$$
(x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)=\left(x \xrightarrow{\gamma \gamma^{\prime}} z\right) .
$$

Detour: (Discrete) gauge theory and holonomy

- Let M be a manifold.
- A path in M is a piecewise smooth map $\gamma:[0,1] \rightarrow M$. We consider paths up to homotopy, relative to the end-points.

Paths γ_{1} and γ_{2} are homotopic.

- Denote paths as $(x \xrightarrow{\gamma} y), x$ and y are initial and end-points.
- Paths $(x \xrightarrow{\gamma} y)$ and $\left(y \xrightarrow{\gamma^{\prime}} z\right)$ can be concatenated:

$$
(x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)=\left(x \xrightarrow{\gamma \gamma^{\prime}} z\right) .
$$

Detour: (Discrete) gauge theory and holonomy

- Let M be a manifold.
- A path in M is a piecewise smooth map $\gamma:[0,1] \rightarrow M$. We consider paths up to homotopy, relative to the end-points.

Paths γ_{1} and γ_{2} are homotopic.

- Denote paths as $(x \xrightarrow{\gamma} y), x$ and y are initial and end-points.
- Paths $(x \xrightarrow{\gamma} y)$ and $\left(y \xrightarrow{\gamma^{\prime}} z\right)$ can be concatenated:

$$
(x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)=\left(x \xrightarrow{\gamma \gamma^{\prime}} z\right) .
$$

Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk). Given a principal G-bundle $P \rightarrow M$ - i.e. a gauge field -,

Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk).
Given a principal G-bundle $P \rightarrow M-$ i.e. a gauge field,-
we have the parallel transport (a.k.a. holonomy) of P :

Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk). Given a principal G-bundle $P \rightarrow M$ - i.e. a gauge field -, we have the parallel transport (a.k.a. holonomy) of P :

Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk). Given a principal G-bundle $P \rightarrow M$ - i.e. a gauge field -, we have the parallel transport (a.k.a. holonomy) of P :

Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk). Given a principal G-bundle $P \rightarrow M$ - i.e. a gauge field -, we have the parallel transport (a.k.a. holonomy) of P :

$$
\mathcal{F}:\{\text { Paths in } M\} \rightarrow G
$$

Recall parallel transport preserves concatenation of paths:

Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk). Given a principal G-bundle $P \rightarrow M$ - i.e. a gauge field -, we have the parallel transport (a.k.a. holonomy) of P :

$$
\begin{aligned}
\mathcal{F}:\{\text { Paths } \quad \text { in } M\} & \rightarrow G \\
& \gamma \longmapsto \operatorname{hol}^{1}(\gamma)=g_{\gamma} \in G
\end{aligned}
$$

Recall parallel transport preserves concatenation of paths:

Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk). Given a principal G-bundle $P \rightarrow M$ - i.e. a gauge field -, we have the parallel transport (a.k.a. holonomy) of P :

$$
\begin{aligned}
\mathcal{F}:\{\text { Paths } \quad \text { in } M\} & \rightarrow G \\
& \gamma \longmapsto \operatorname{hol}^{1}(\gamma)=g_{\gamma} \in G
\end{aligned}
$$

Recall parallel transport preserves concatenation of paths:

$$
\mathcal{F}\left((x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)\right)=\mathcal{F}(x \xrightarrow{\gamma} y) \mathcal{F}\left(y \xrightarrow{\gamma^{\prime}} z\right)
$$

Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk). Given a principal G-bundle $P \rightarrow M$ - i.e. a gauge field -, we have the parallel transport (a.k.a. holonomy) of P :

$$
\begin{aligned}
\mathcal{F}:\{\text { Paths } \quad \text { in } M\} & \rightarrow G \\
& \gamma \longmapsto \operatorname{hol}^{1}(\gamma)=g_{\gamma} \in G
\end{aligned}
$$

Recall parallel transport preserves concatenation of paths:

$$
\mathcal{F}\left((x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)\right)=\mathcal{F}(x \xrightarrow{\gamma} y) \mathcal{F}\left(y \xrightarrow{\gamma^{\prime}} z\right)
$$

Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk). Given a principal G-bundle $P \rightarrow M$ - i.e. a gauge field -, we have the parallel transport (a.k.a. holonomy) of P :

$$
\begin{aligned}
\mathcal{F}:\{\text { Paths } \quad \text { in } M\} & \rightarrow G \\
& \gamma \longmapsto \operatorname{hol}^{1}(\gamma)=g_{\gamma} \in G
\end{aligned}
$$

Recall parallel transport preserves concatenation of paths:

$$
\mathcal{F}\left((x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)\right)=\mathcal{F}(x \xrightarrow{\gamma} y) \mathcal{F}\left(y \xrightarrow{\gamma^{\prime}} z\right)
$$

Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk). Given a principal G-bundle $P \rightarrow M$ - i.e. a gauge field -, we have the parallel transport (a.k.a. holonomy) of P :

$$
\begin{aligned}
\mathcal{F}:\{\text { Paths } \quad \text { in } M\} & \rightarrow G \\
& \gamma \longmapsto \operatorname{hol}^{1}(\gamma)=g_{\gamma} \in G
\end{aligned}
$$

Recall parallel transport preserves concatenation of paths:

$$
\mathcal{F}\left((x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)\right)=\mathcal{F}(x \xrightarrow{\gamma} y) \mathcal{F}\left(y \xrightarrow{\gamma^{\prime}} z\right)
$$

NB: must specify elements $p_{v} \in F_{v}$, the fibre of P at each $v \in M$.
If G is a Lie group we need G-connection A

Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk). Given a principal G-bundle $P \rightarrow M$ - i.e. a gauge field -, we have the parallel transport (a.k.a. holonomy) of P :

$$
\begin{aligned}
\mathcal{F}:\{\text { Paths } \quad \text { in } M\} & \rightarrow G \\
& \gamma \longmapsto \operatorname{hol}^{1}(\gamma)=g_{\gamma} \in G
\end{aligned}
$$

Recall parallel transport preserves concatenation of paths:

$$
\mathcal{F}\left((x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)\right)=\mathcal{F}(x \xrightarrow{\gamma} y) \mathcal{F}\left(y \xrightarrow{\gamma^{\prime}} z\right)
$$

NB: must specify elements $p_{v} \in F_{v}$, the fibre of P at each $v \in M$. If G is a Lie group we need G-connection A.

Gauge Theory and Holonomy

Let G be a group (G will be finite throughout the talk). Given a principal G-bundle $P \rightarrow M$ - i.e. a gauge field -, we have the parallel transport (a.k.a. holonomy) of P :

$$
\begin{aligned}
\mathcal{F}:\{\text { Paths } \quad \text { in } M\} & \rightarrow G \\
& \gamma \longmapsto \operatorname{hol}^{1}(\gamma)=g_{\gamma} \in G
\end{aligned}
$$

Recall parallel transport preserves concatenation of paths:

$$
\mathcal{F}\left((x \xrightarrow{\gamma} y)\left(y \xrightarrow{\gamma^{\prime}} z\right)\right)=\mathcal{F}(x \xrightarrow{\gamma} y) \mathcal{F}\left(y \xrightarrow{\gamma^{\prime}} z\right)
$$

NB: must specify elements $p_{v} \in F_{v}$, the fibre of P at each $v \in M$. If G is a Lie group we need G-connection A. Locally $A \in \Omega^{1}(M, \mathfrak{g})$.

Gauge Theory and Holonomy

Conversely, G-connections can be defined from their holonomy.
Since G is finite, and M compact,

Gauge Theory and Holonomy

Conversely, G-connections can be defined from their holonomy.
Since G is finite, and M compact, to reconstruct the G-connection we only need to know the holonomy along a finite number of paths.

Gauge Theory and Holonomy

Conversely, G-connections can be defined from their holonomy. Since G is finite, and M compact, to reconstruct the G-connection

Gauge Theory and Holonomy

Conversely, G-connections can be defined from their holonomy. Since G is finite, and M compact, to reconstruct the G-connection we only need to know the holonomy along a finite number of paths. The theory of gauge fields becomes combinatorial / discrete. Combinatorially, a G-connection over M looks like:

Gauge Theory and Holonomy

Conversely, G-connections can be defined from their holonomy. Since G is finite, and M compact, to reconstruct the G-connection we only need to know the holonomy along a finite number of paths. The theory of gauge fields becomes combinatorial / discrete.

Gauge Theory and Holonomy

Conversely, G-connections can be defined from their holonomy. Since G is finite, and M compact, to reconstruct the G-connection we only need to know the holonomy along a finite number of paths. The theory of gauge fields becomes combinatorial / discrete. Combinatorially, a G-connection over M looks like:

Gauge Theory and Holonomy

Conversely, G-connections can be defined from their holonomy.
Since G is finite, and M compact, to reconstruct the G-connection we only need to know the holonomy along a finite number of paths. The theory of gauge fields becomes combinatorial / discrete.
Combinatorially, a G-connection over M looks like:

Gauge Theory and Holonomy

Conversely, G-connections can be defined from their holonomy.
Since G is finite, and M compact, to reconstruct the G-connection we only need to know the holonomy along a finite number of paths. The theory of gauge fields becomes combinatorial / discrete.
Combinatorially, a G-connection over M looks like:

$$
\begin{aligned}
& a, b, c \\
& d, e, f, g \in G
\end{aligned}
$$

Labels on edges denote holonomy along them.
Flatness conditions are satisfied on triangles:

Gauge Theory and Holonomy

Conversely, G-connections can be defined from their holonomy.
Since G is finite, and M compact, to reconstruct the G-connection we only need to know the holonomy along a finite number of paths. The theory of gauge fields becomes combinatorial / discrete.
Combinatorially, a G-connection over M looks like:

Labels on edges denote holonomy along them.
Flatness conditions are satisfied on triangles:
the holonomy around each triangle is trivial.

Gauge Theory and Holonomy

Conversely, G-connections can be defined from their holonomy.
Since G is finite, and M compact, to reconstruct the G-connection we only need to know the holonomy along a finite number of paths. The theory of gauge fields becomes combinatorial / discrete.
Combinatorially, a G-connection over M looks like:

Labels on edges denote holonomy along them.
Flatness conditions are satisfied on triangles:

Gauge Theory and Holonomy

Conversely, G-connections can be defined from their holonomy.
Since G is finite, and M compact, to reconstruct the G-connection we only need to know the holonomy along a finite number of paths. The theory of gauge fields becomes combinatorial / discrete.
Combinatorially, a G-connection over M looks like:

$$
\begin{aligned}
& a, b, c \\
& d, e, f, g \in G
\end{aligned}
$$

Labels on edges denote holonomy along them.
Flatness conditions are satisfied on triangles: the holonomy around each triangle is trivial.

Gauge Theory and Holonomy

Conversely, G-connections can be defined from their holonomy.
Since G is finite, and M compact, to reconstruct the G-connection we only need to know the holonomy along a finite number of paths. The theory of gauge fields becomes combinatorial / discrete.
Combinatorially, a G-connection over M looks like:

$$
\begin{aligned}
& a, b, c \\
& d, e, f, g \in G
\end{aligned}
$$

Labels on edges denote holonomy along them.
Flatness conditions are satisfied on triangles: the holonomy around each triangle is trivial.

$$
a b c=1_{G}
$$

‘Extension’ to discrete Higher Gauge Theory

- Higher gauge theory formalises non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.
- Non-abelian holonomy along surfaces is multiplicative with respect to the several ways we can concatenate surfaces.

'Extension' to discrete Higher Gauge Theory

- Higher gauge theory formalises non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.
respect to the several ways we can concatenate surfaces.
(This is why higher category theory arises here.)

'Extension' to discrete Higher Gauge Theory

- Higher gauge theory formalises non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.
- Non-abelian holonomy along surfaces is multiplicative with respect to the several ways we can concatenate surfaces.
(This is why higher category theory arises here.)

'Extension' to discrete Higher Gauge Theory

- Higher gauge theory formalises non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.
- Non-abelian holonomy along surfaces is multiplicative with respect to the several ways we can concatenate surfaces.
(This is why higher category theory arises here.)
- We need a higher order version of a group: called a "2-group" 2-groups are equivalent to crossed modules.

'Extension' to discrete Higher Gauge Theory

- Higher gauge theory formalises non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.
- Non-abelian holonomy along surfaces is multiplicative with respect to the several ways we can concatenate surfaces.
(This is why higher category theory arises here.)
- We need a higher order version of a group: called a "2-group".

2-groups are equivalent to crossed modules.

'Extension' to discrete Higher Gauge Theory

- Higher gauge theory formalises non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.
- Non-abelian holonomy along surfaces is multiplicative with respect to the several ways we can concatenate surfaces.
(This is why higher category theory arises here.)
- We need a higher order version of a group: called a "2-group".
- 2-groups are equivalent to crossed modules.

'Extension' to discrete Higher Gauge Theory

- Higher gauge theory formalises non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.
- Non-abelian holonomy along surfaces is multiplicative with respect to the several ways we can concatenate surfaces.
(This is why higher category theory arises here.)
- We need a higher order version of a group: called a "2-group".
- 2-groups are equivalent to crossed modules.

A crossed module of groups $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

'Extension' to discrete Higher Gauge Theory

- Higher gauge theory formalises non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.
- Non-abelian holonomy along surfaces is multiplicative with respect to the several ways we can concatenate surfaces.
(This is why higher category theory arises here.)
- We need a higher order version of a group: called a "2-group".
- 2-groups are equivalent to crossed modules.

A crossed module of groups $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- a group map $\partial: E \rightarrow G$,

'Extension' to discrete Higher Gauge Theory

- Higher gauge theory formalises non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.
- Non-abelian holonomy along surfaces is multiplicative with respect to the several ways we can concatenate surfaces.
(This is why higher category theory arises here.)
- We need a higher order version of a group: called a "2-group".
- 2-groups are equivalent to crossed modules.

A crossed module of groups $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- a group map $\partial: E \rightarrow G$,
- and a left-action of G on E, by automorphisms, such that:

$$
\text { 1. } \partial(g \triangleright e)=g \partial(e) g^{-1} \text {, if } g \in G \text { and } e \in E \text {; }
$$

'Extension' to discrete Higher Gauge Theory

- Higher gauge theory formalises non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.
- Non-abelian holonomy along surfaces is multiplicative with respect to the several ways we can concatenate surfaces.
(This is why higher category theory arises here.)
- We need a higher order version of a group: called a "2-group".
- 2-groups are equivalent to crossed modules.

A crossed module of groups $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- a group map $\partial: E \rightarrow G$,
- and a left-action of G on E, by automorphisms, such that:

1. $\partial(g \triangleright e)=g \partial(e) g^{-1}$, if $g \in G$ and $e \in E$;

'Extension' to discrete Higher Gauge Theory

- Higher gauge theory formalises non-abelian holonomy along paths, and also non-abelian holonomy along surfaces.
- Non-abelian holonomy along surfaces is multiplicative with respect to the several ways we can concatenate surfaces.
(This is why higher category theory arises here.)
- We need a higher order version of a group: called a "2-group".
- 2-groups are equivalent to crossed modules.

A crossed module of groups $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ is given by:

- a group map $\partial: E \rightarrow G$,
- and a left-action of G on E, by automorphisms, such that:

1. $\partial(g \triangleright e)=g \partial(e) g^{-1}$, if $g \in G$ and $e \in E$;
2. $\partial(e) \triangleright e^{\prime}=e e^{\prime} e^{-1}$, if $e, e^{\prime} \in E$.

2-dimensional (i.e. surface) holonomy functors
Given $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ we can define "bigons" in \mathcal{G}.

2-dimensional (i.e. surface) holonomy functors
Given $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ we can define "bigons" in \mathcal{G}.

2-dimensional (i.e. surface) holonomy functors
Given $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ we can define "bigons" in \mathcal{G}.

These compose horizontally and vertically:

2-dimensional (i.e. surface) holonomy functors

Given $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ we can define "bigons" in \mathcal{G}.

These compose horizontally and vertically:

2-dimensional (i.e. surface) holonomy functors
Given $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ we can define "bigons" in \mathcal{G}.

These compose horizontally and vertically:

2-dimensional (i.e. surface) holonomy functors

Given $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ we can define "bigons" in \mathcal{G}.

These compose horizontally and vertically:

2-dimensional (i.e. surface) holonomy functors

Given $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ we can define "bigons" in \mathcal{G}.

These compose horizontally and vertically:

=

2-dimensional (i.e. surface) holonomy functors

Given $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ we can define "bigons" in \mathcal{G}.

These compose horizontally and vertically:

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are:

 associative,
2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are: associative, and have units and inverses.

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are: associative, and have units and inverses.

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are: associative, and have units and inverses.

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are: associative, and have units and inverses.
The interchange law is satisfied.

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are: associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are: associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are: associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

does not depend on the order whereby it is performed. As a consequence, evaluations of more complicated diagrams like:

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are: associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

does not depend on the order whereby it is performed.
As a consequence, evaluations of more complicated diagrams like:

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are: associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

does not depend on the order whereby it is performed. As a consequence, evaluations of more complicated diagrams like:

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are: associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

does not depend on the order whereby it is performed.
As a consequence, evaluations of more complicated diagrams like:

do not depend on the order whereby we apply compositions.

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are: associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

does not depend on the order whereby it is performed.
As a consequence, evaluations of more complicated diagrams like:

do not depend on the order whereby we apply compositions.

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are: associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

does not depend on the order whereby it is performed.
As a consequence, evaluations of more complicated diagrams like:

do not depend on the order whereby we apply compositions.

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are: associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

does not depend on the order whereby it is performed.
As a consequence, evaluations of more complicated diagrams like:

do not depend on the order whereby we apply compositions.
This leads to a notion of non-abelian multiplication along surfaces.

2-dimensional holonomy functors

Horizontal and vertical compositions of bigons in \mathcal{G} are: associative, and have units and inverses.
The interchange law is satisfied. This means that the evaluation of

does not depend on the order whereby it is performed.
As a consequence, evaluations of more complicated diagrams like:

do not depend on the order whereby we apply compositions.
This leads to a notion of non-abelian multiplication along surfaces.
This notion underpins surface-holonomy in higher gauge theory.

2-dimensional holonomy

 Two paths $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point.
2-dimensional holonomy

A geometric bigon on in a manifold M is given by:

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:
Two paths $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point. A homotopy (i.e. a 'surface') $\Sigma:[0,1]^{2} \rightarrow M$, connecting γ and γ^{\prime} Σ is considered up to homotopy relative to $\partial\left([0,1]^{2}\right)$

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:
Two paths $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point. A homotopy (i.e. a 'surface') $\Sigma:[0,1]^{2} \rightarrow M$, connecting γ and γ^{\prime}.

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:
Two paths $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point. A homotopy (i.e. a 'surface') $\Sigma:[0,1]^{2} \rightarrow M$, connecting γ and γ^{\prime}. Σ is considered up to homotopy relative to $\partial\left([0,1]^{2}\right)$.

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:
Two paths $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point. A homotopy (i.e. a 'surface') $\Sigma:[0,1]^{2} \rightarrow M$, connecting γ and γ^{\prime}. Σ is considered up to homotopy relative to $\partial\left([0,1]^{2}\right)$.
Geometric bigons are represented as:

Geometric bigons can be concatenated horizontally and vertically

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:
Two paths $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point. A homotopy (i.e. a 'surface') $\Sigma:[0,1]^{2} \rightarrow M$, connecting γ and γ^{\prime}. Σ is considered up to homotopy relative to $\partial\left([0,1]^{2}\right)$.
Geometric bigons are represented as:

Geometric bigons can be concatenated horizontally and vertically.

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:
Two paths $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point. A homotopy (i.e. a 'surface') $\Sigma:[0,1]^{2} \rightarrow M$, connecting γ and γ^{\prime}. Σ is considered up to homotopy relative to $\partial\left([0,1]^{2}\right)$.
Geometric bigons are represented as:

Geometric bigons can be concatenated horizontally and vertically.

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:
Two paths $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point. A homotopy (i.e. a 'surface') $\Sigma:[0,1]^{2} \rightarrow M$, connecting γ and γ^{\prime}. Σ is considered up to homotopy relative to $\partial\left([0,1]^{2}\right)$.
Geometric bigons are represented as:

Geometric bigons can be concatenated horizontally and vertically.

- Definition

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:
Two paths $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point. A homotopy (i.e. a 'surface') $\Sigma:[0,1]^{2} \rightarrow M$, connecting γ and γ^{\prime}. Σ is considered up to homotopy relative to $\partial\left([0,1]^{2}\right)$.
Geometric bigons are represented as:

Geometric bigons can be concatenated horizontally and vertically.

- Definition Let M be a manifold; \mathcal{G} a crossed module.

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:
Two paths $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point. A homotopy (i.e. a 'surface') $\Sigma:[0,1]^{2} \rightarrow M$, connecting γ and γ^{\prime}. Σ is considered up to homotopy relative to $\partial\left([0,1]^{2}\right)$.
Geometric bigons are represented as:

Geometric bigons can be concatenated horizontally and vertically.

- Definition Let M be a manifold; \mathcal{G} a crossed module.

A 2-dimensional holonomy (i.e. a higher gauge field) is a map:

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:
Two paths $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point. A homotopy (i.e. a 'surface') $\Sigma:[0,1]^{2} \rightarrow M$, connecting γ and γ^{\prime}. Σ is considered up to homotopy relative to $\partial\left([0,1]^{2}\right)$.
Geometric bigons are represented as:

Geometric bigons can be concatenated horizontally and vertically.

- Definition Let M be a manifold; \mathcal{G} a crossed module. A 2-dimensional holonomy (i.e. a higher gauge field) is a map:

$$
\{\text { Geometric bigons in } M\} \xrightarrow{\mathcal{F}}\{\text { Bigons in } \mathcal{G}\}
$$

2-dimensional holonomy

A geometric bigon on in a manifold M is given by:
Two paths $\gamma, \gamma^{\prime}:[0,1] \rightarrow M$, with the same initial and end-point. A homotopy (i.e. a 'surface') $\Sigma:[0,1]^{2} \rightarrow M$, connecting γ and γ^{\prime}. Σ is considered up to homotopy relative to $\partial\left([0,1]^{2}\right)$.
Geometric bigons are represented as:

Geometric bigons can be concatenated horizontally and vertically.

- Definition Let M be a manifold; \mathcal{G} a crossed module. A 2-dimensional holonomy (i.e. a higher gauge field) is a map:

$$
\{\text { Geometric bigons in } M\} \xrightarrow{\mathcal{F}}\{\text { Bigons in } \mathcal{G}\}
$$

Preserving horizontal and vertical compositions.

2D holonomy along Σ

Note: for Lie crossed modules $(\partial: E \rightarrow G, \triangleright)$, 2-dimensional holonomies arise from pairs $A \in \Omega^{1}(M, \mathfrak{g})$ and $B \in \Omega^{2}(M, \mathfrak{e})$,

2D holonomy along Σ

Note: for Lie crossed modules $(\partial: E \rightarrow G, \triangleright)$, 2-dimensional holonomies arise from pairs $A \in \Omega^{1}(M, \mathfrak{g})$ and $B \in \Omega^{2}(M, \mathfrak{e})$, with $\partial(B)=$ Curva $_{A}=d A+\frac{1}{2}[A, A]$.

2D holonomy along Σ

Note: for Lie crossed modules $(\partial: E \rightarrow G, \triangleright)$, 2-dimensional holonomies arise from pairs $A \in \Omega^{1}(M, \mathfrak{g})$ and $B \in \Omega^{2}(M, \mathfrak{e})$,

2D holonomy along Σ

Note: for Lie crossed modules $(\partial: E \rightarrow G, \triangleright), 2$-dimensional holonomies arise from pairs $A \in \Omega^{1}(M, \mathfrak{g})$ and $B \in \Omega^{2}(M, \mathfrak{e})$, with $\partial(B)=$ Curv $_{A}=d A+\frac{1}{2}[A, A]$.

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let M be a compact manifold, possibly with boundary.

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module. Let M be a compact manifold, possibly with boundary.

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let M be a compact manifold, possibly with boundary. Let $L=\left(L^{0}, L^{1}, L^{2}, L^{3} \ldots\right)$ be a CW-decomposition of M.
n HGT 3-cells $b \in L^{3}$ (called blobs) have an important role.
A discrete 2-connection \mathcal{F} is given by an assignment:

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let M be a compact manifold, possibly with boundary. Let $L=\left(L^{0}, L^{1}, L^{2}, L^{3} \ldots\right)$ be a CW-decomposition of M. In HGT 3-cells $b \in L^{3}$ (called blobs) have an important role.

A discrete 2-connection \mathcal{F} is given by an assignment:

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module. Let M be a compact manifold, possibly with boundary. Let $L=\left(L^{0}, L^{1}, L^{2}, L^{3} \ldots\right)$ be a CW-decomposition of M. In HGT 3-cells $b \in L^{3}$ (called blobs) have an important role.
A discrete 2-connection \mathcal{F} is given by an assignment:

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let M be a compact manifold, possibly with boundary. Let $L=\left(L^{0}, L^{1}, L^{2}, L^{3} \ldots\right)$ be a CW-decomposition of M. In HGT 3-cells $b \in L^{3}$ (called blobs) have an important role.
A discrete 2-connection \mathcal{F} is given by an assignment:

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let M be a compact manifold, possibly with boundary. Let $L=\left(L^{0}, L^{1}, L^{2}, L^{3} \ldots\right)$ be a CW-decomposition of M. In HGT 3-cells $b \in L^{3}$ (called blobs) have an important role.
A discrete 2-connection \mathcal{F} is given by an assignment:

$$
\gamma \in L^{1} \mapsto g_{\gamma} \in G
$$

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let M be a compact manifold, possibly with boundary. Let $L=\left(L^{0}, L^{1}, L^{2}, L^{3} \ldots\right)$ be a CW-decomposition of M. In HGT 3-cells $b \in L^{3}$ (called blobs) have an important role.
A discrete 2-connection \mathcal{F} is given by an assignment:

$$
\gamma \in L^{1} \mapsto g_{\gamma} \in G \text { and } P \in L^{2} \mapsto e_{p} \in E
$$

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let M be a compact manifold, possibly with boundary. Let $L=\left(L^{0}, L^{1}, L^{2}, L^{3} \ldots\right)$ be a CW-decomposition of M. In HGT 3-cells $b \in L^{3}$ (called blobs) have an important role.
A discrete 2 -connection \mathcal{F} is given by an assignment:

$$
\gamma \in L^{1} \mapsto g_{\gamma} \in G \text { and } P \in L^{2} \mapsto e_{P} \in E
$$

satisfying the fake-flatness condition, namely:

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let M be a compact manifold, possibly with boundary. Let $L=\left(L^{0}, L^{1}, L^{2}, L^{3} \ldots\right)$ be a CW-decomposition of M. In HGT 3-cells $b \in L^{3}$ (called blobs) have an important role.
A discrete 2-connection \mathcal{F} is given by an assignment:

$$
\gamma \in L^{1} \mapsto g_{\gamma} \in G \text { and } P \in L^{2} \mapsto e_{P} \in E
$$

satisfying the fake-flatness condition, namely:

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let M be a compact manifold, possibly with boundary. Let $L=\left(L^{0}, L^{1}, L^{2}, L^{3} \ldots\right)$ be a CW-decomposition of M. In HGT 3-cells $b \in L^{3}$ (called blobs) have an important role.
A discrete 2-connection \mathcal{F} is given by an assignment:

$$
\gamma \in L^{1} \mapsto g_{\gamma} \in G \text { and } P \in L^{2} \mapsto e_{P} \in E
$$

satisfying the fake-flatness condition, namely:
If we have a configuration like:

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let M be a compact manifold, possibly with boundary. Let $L=\left(L^{0}, L^{1}, L^{2}, L^{3} \ldots\right)$ be a CW-decomposition of M. In HGT 3-cells $b \in L^{3}$ (called blobs) have an important role.
A discrete 2-connection \mathcal{F} is given by an assignment:

$$
\gamma \in L^{1} \mapsto g_{\gamma} \in G \text { and } P \in L^{2} \mapsto e_{P} \in E
$$

satisfying the fake-flatness condition, namely:
If we have a configuration like:

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let M be a compact manifold, possibly with boundary. Let $L=\left(L^{0}, L^{1}, L^{2}, L^{3} \ldots\right)$ be a CW-decomposition of M. In HGT 3-cells $b \in L^{3}$ (called blobs) have an important role.
A discrete 2-connection \mathcal{F} is given by an assignment:

$$
\gamma \in L^{1} \mapsto g_{\gamma} \in G \text { and } P \in L^{2} \mapsto e_{P} \in E
$$

satisfying the fake-flatness condition, namely:
If we have a configuration like:

Then:

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let M be a compact manifold, possibly with boundary. Let $L=\left(L^{0}, L^{1}, L^{2}, L^{3} \ldots\right)$ be a CW-decomposition of M. In HGT 3-cells $b \in L^{3}$ (called blobs) have an important role.
A discrete 2-connection \mathcal{F} is given by an assignment:

$$
\gamma \in L^{1} \mapsto g_{\gamma} \in G \text { and } P \in L^{2} \mapsto e_{P} \in E
$$

satisfying the fake-flatness condition, namely:
If we have a configuration like:

Then:

$$
\partial\left(e_{P}\right)=g_{\gamma_{4}}^{-1} g_{\gamma_{3}} g_{\gamma_{2}} g_{\gamma_{1}}
$$

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let \mathcal{F} be a discrete 2 -connection.

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let \mathcal{F} be a discrete 2-connection.

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let \mathcal{F} be a discrete 2-connection.

- Theorem Let Σ be a 2 -sphere cellularly embedded in M, $v \in \Sigma$, an 'initial point'

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let \mathcal{F} be a discrete 2-connection.

- Theorem Let Σ be a 2 -sphere cellularly embedded in M,

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let \mathcal{F} be a discrete 2-connection.

- Theorem Let Σ be a 2 -sphere cellularly embedded in M, $v \in \Sigma$, an 'initial point'. We have a surface-holonomy:

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let \mathcal{F} be a discrete 2-connection.

- Theorem Let Σ be a 2 -sphere cellularly embedded in M, $v \in \Sigma$, an 'initial point'. We have a surface-holonomy: This surface-holonomy depends only on the starting point
$v \in \Sigma$, and not in the way whereby we combine 2 -cells.

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let \mathcal{F} be a discrete 2-connection.

- Theorem Let Σ be a 2 -sphere cellularly embedded in M, $v \in \Sigma$, an 'initial point'. We have a surface-holonomy: $H o l_{v}^{2}(\mathcal{F}, \Sigma) \in \operatorname{ker}(\partial) \subset E$.
This surface-holonomy depends only on the starting point $v \in \Sigma$, and not in the way whereby we combine 2-cells.

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let \mathcal{F} be a discrete 2 -connection.

- Theorem Let Σ be a 2 -sphere cellularly embedded in M, $v \in \Sigma$, an 'initial point'. We have a surface-holonomy: $H o l_{v}^{2}(\mathcal{F}, \Sigma) \in \operatorname{ker}(\partial) \subset E$.
This surface-holonomy depends only on the starting point $v \in \Sigma$, and not in the way whereby we combine 2-cells.

For example, consider the discrete 2-connection on the tetrahedron Σ, below, based on the bottom left corner v_{0}.

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let \mathcal{F} be a discrete 2-connection.

- Theorem Let Σ be a 2 -sphere cellularly embedded in M, $v \in \Sigma$, an 'initial point'. We have a surface-holonomy: $H o l_{v}^{2}(\mathcal{F}, \Sigma) \in \operatorname{ker}(\partial) \subset E$.
This surface-holonomy depends only on the starting point $v \in \Sigma$, and not in the way whereby we combine 2-cells.

For example, consider the discrete 2-connection on the tetrahedron Σ, below, based on the bottom left corner v_{0}.

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let \mathcal{F} be a discrete 2-connection.

- Theorem Let Σ be a 2 -sphere cellularly embedded in M, $v \in \Sigma$, an 'initial point'. We have a surface-holonomy: $\operatorname{Hol}_{v}^{2}(\mathcal{F}, \Sigma) \in \operatorname{ker}(\partial) \subset E$.
This surface-holonomy depends only on the starting point $v \in \Sigma$, and not in the way whereby we combine 2-cells.

For example, consider the discrete 2-connection on the tetrahedron Σ, below, based on the bottom left corner v_{0}.

Discrete surface holonomy

Let $\mathcal{G}=(\partial: E \rightarrow G, \triangleright)$ be a crossed module.
Let \mathcal{F} be a discrete 2-connection.

- Theorem Let Σ be a 2 -sphere cellularly embedded in M, $v \in \Sigma$, an 'initial point'. We have a surface-holonomy: $\operatorname{Hol}_{v}^{2}(\mathcal{F}, \Sigma) \in \operatorname{ker}(\partial) \subset E$.
This surface-holonomy depends only on the starting point $v \in \Sigma$, and not in the way whereby we combine 2-cells.

For example, consider the discrete 2-connection on the tetrahedron Σ, below, based on the bottom left corner v_{0}.

Then $\operatorname{Hol}_{v_{0}}^{2}(\mathcal{F}, \Sigma)=e_{1} e_{2}^{-1} e_{3}^{-1} g_{01} \triangleright e_{4}$

Crossed complexes

A crossed complex is given by a complex

$$
\mathcal{C}:=\ldots \stackrel{\partial}{\rightarrow} C_{n} \xrightarrow{\partial} C_{n-1} \stackrel{\partial}{\rightarrow} \ldots \stackrel{\partial}{\rightarrow} C_{2} \xrightarrow{\partial} C_{1}
$$

of groupoids, all with object set C_{0}. Such that:

Crossed complexes

A crossed complex is given by a complex

$$
\mathcal{C}:=\ldots \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} C_{2} \xrightarrow{\partial} C_{1}
$$

Crossed complexes

A crossed complex is given by a complex

$$
\mathcal{C}:=\ldots \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} C_{2} \xrightarrow{\partial} C_{1}
$$

of groupoids, all with object set C_{0}. Such that:
\rightarrow All groupoids for $C_{i}, i \geq 2$ are totally disconnected.

- All boundary maps are the identity over the object C_{0}

Crossed complexes

A crossed complex is given by a complex

$$
\mathcal{C}:=\ldots \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} C_{2} \xrightarrow{\partial} C_{1}
$$

of groupoids, all with object set C_{0}. Such that:

- All groupoids for $C_{i}, i \geq 2$ are totally disconnected.
- All boundary maps are the identity over the object C_{0}.

Crossed complexes

A crossed complex is given by a complex

$$
\mathcal{C}:=\ldots \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} C_{2} \xrightarrow{\partial} C_{1}
$$

of groupoids, all with object set C_{0}. Such that:

- All groupoids for $C_{i}, i \geq 2$ are totally disconnected.
- All boundary maps are the identity over the object C_{0}.

Crossed complexes

A crossed complex is given by a complex

$$
\mathcal{C}:=\ldots \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} C_{2} \xrightarrow{\partial} C_{1}
$$

of groupoids, all with object set C_{0}. Such that:

- All groupoids for $C_{i}, i \geq 2$ are totally disconnected.
- All boundary maps are the identity over the object C_{0}.
- We have an action of C_{1} over on all groupoids $C_{i}, i \geq 2$
- All boundary maps preserve the action.

Crossed complexes

A crossed complex is given by a complex

$$
\mathcal{C}:=\ldots \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} C_{2} \xrightarrow{\partial} C_{1}
$$

of groupoids, all with object set C_{0}. Such that:

- All groupoids for $C_{i}, i \geq 2$ are totally disconnected.
- All boundary maps are the identity over the object C_{0}.
- We have an action of C_{1} over on all groupoids $C_{i}, i \geq 2$
- All boundary maps preserve the action.
\Rightarrow Peiffer 1: If $x \xrightarrow{g} y \in C_{1}$ and $K \in C(y, y)$ then: $\partial(g \triangleright K)=g \partial(K) g^{-1}$

Crossed complexes

A crossed complex is given by a complex

$$
\mathcal{C}:=\ldots \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} C_{2} \xrightarrow{\partial} C_{1}
$$

of groupoids, all with object set C_{0}. Such that:

- All groupoids for $C_{i}, i \geq 2$ are totally disconnected.
- All boundary maps are the identity over the object C_{0}.
- We have an action of C_{1} over on all groupoids $C_{i}, i \geq 2$
- All boundary maps preserve the action.
- Peiffer 1: If $x \xrightarrow{g} y \in C_{1}$ and $K \in C(y, y)$ then:

$$
\partial(g \triangleright K)=g \partial(K) g^{-1}
$$

- Peiffer 2: If $K, L \in \mathbb{C}_{2}(y, y)$ then $\partial(K) \triangleright L=K L K^{-1}$

Crossed complexes

A crossed complex is given by a complex

$$
\mathcal{C}:=\ldots \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} C_{2} \xrightarrow{\partial} C_{1}
$$

of groupoids, all with object set C_{0}. Such that:

- All groupoids for $C_{i}, i \geq 2$ are totally disconnected.
- All boundary maps are the identity over the object C_{0}.
- We have an action of C_{1} over on all groupoids $C_{i}, i \geq 2$
- All boundary maps preserve the action.
- Peiffer 1: If $x \xrightarrow{g} y \in C_{1}$ and $K \in C(y, y)$ then:

$$
\partial(g \triangleright K)=g \partial(K) g^{-1}
$$

- Peiffer 2: If $K, L \in \mathbb{C}_{2}(y, y)$ then $\partial(K) \triangleright L=K L K^{-1}$

Crossed complexes

A crossed complex is given by a complex

$$
\mathcal{C}:=\ldots \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} C_{2} \xrightarrow{\partial} C_{1}
$$

of groupoids, all with object set C_{0}. Such that:

- All groupoids for $C_{i}, i \geq 2$ are totally disconnected.
- All boundary maps are the identity over the object C_{0}.
- We have an action of C_{1} over on all groupoids $C_{i}, i \geq 2$
- All boundary maps preserve the action.
- Peiffer 1: If $x \xrightarrow{g} y \in C_{1}$ and $K \in C(y, y)$ then:

$$
\partial(g \triangleright K)=g \partial(K) g^{-1}
$$

- Peiffer 2: If $K, L \in \mathbb{C}_{2}(y, y)$ then $\partial(K) \triangleright L=K L K^{-1}$
- The action of $\partial\left(C_{2}\right)$ is trivial on all groupoids C_{i} for $i \geq 3$.

Crossed complexes

A crossed complex is given by a complex

$$
\mathcal{C}:=\ldots \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} C_{2} \xrightarrow{\partial} C_{1}
$$

of groupoids, all with object set C_{0}. Such that:

- All groupoids for $C_{i}, i \geq 2$ are totally disconnected.
- All boundary maps are the identity over the object C_{0}.
- We have an action of C_{1} over on all groupoids $C_{i}, i \geq 2$
- All boundary maps preserve the action.
- Peiffer 1: If $x \xrightarrow{g} y \in C_{1}$ and $K \in C(y, y)$ then:

$$
\partial(g \triangleright K)=g \partial(K) g^{-1}
$$

- Peiffer 2: If $K, L \in \mathbb{C}_{2}(y, y)$ then $\partial(K) \triangleright L=K L K^{-1}$
- The action of $\partial\left(C_{2}\right)$ is trivial on all groupoids C_{i} for $i \geq 3$.
- C_{i} is abelian if $i \geq 3$.

Crossed complexes and ω-groupoids

Theorem (Brown-Higgins)
The category of crossed complexes is equivalent to the category of strict ω-groupoids.

Crossed complexes and ω-groupoids

Theorem (Brown-Higgins)
The category of crossed complexes is equivalent to the category of strict ω-groupoids.

Proof has already been indicated for the 2 -groupoid vs crossed modules case.

Crossed complexes and ω-groupoids

Theorem (Brown-Higgins)
The category of crossed complexes is equivalent to the category of strict ω-groupoids.

Proof has already been indicated for the 2-groupoid vs crossed modules case.

Crossed complexes and ω-groupoids

Theorem (Brown-Higgins)
The category of crossed complexes is equivalent to the category of strict ω-groupoids.

Proof has already been indicated for the 2-groupoid vs crossed modules case.

Fundamental crossed complexes and nerves
Theorem (Brown-Higgins)
Let X be a $C W$-complex. Then the sequence

Fundamental crossed complexes and nerves
Theorem (Brown-Higgins)
Let X be a CW-complex. Then the sequence

Fundamental crossed complexes and nerves

Theorem (Brown-Higgins)
Let X be a CW-complex. Then the sequence
is a totally free crossed complex with object set X_{0}

Fundamental crossed complexes and nerves

Theorem (Brown-Higgins)
Let X be a CW-complex. Then the sequence

$$
\begin{aligned}
& \Pi(X):=\ldots \xrightarrow{\partial} \pi_{n}\left(X^{n}, X^{n-1}, X^{0}\right) \xrightarrow{\partial} \pi_{n-1}\left(X^{n-1}, X^{n-2}, X^{0}\right) \\
& \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} \pi_{2}\left(X^{2}, X^{1}, X^{0}\right) \xrightarrow{\partial} \pi_{1}\left(X^{1}, X^{0}\right)
\end{aligned}
$$

is a totally free crossed complex with object set X_{0}.
The nerve $\mathcal{N C}$ of the crossed complex

Fundamental crossed complexes and nerves

Theorem (Brown-Higgins)
Let X be a CW-complex. Then the sequence

$$
\begin{aligned}
& \Pi(X):=\ldots \xrightarrow{\partial} \pi_{n}\left(X^{n}, X^{n-1}, X^{0}\right) \xrightarrow{\partial} \pi_{n-1}\left(X^{n-1}, X^{n-2}, X^{0}\right) \\
& \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} \pi_{2}\left(X^{2}, X^{1}, X^{0}\right) \xrightarrow{\partial} \pi_{1}\left(X^{1}, X^{0}\right)
\end{aligned}
$$

is a totally free crossed complex with object set X_{0}.
The nerve $\mathcal{N C}$ of the crossed complex

Fundamental crossed complexes and nerves

Theorem (Brown-Higgins)
Let X be a CW-complex. Then the sequence

$$
\begin{aligned}
& \Pi(X):=\ldots \xrightarrow{\partial} \pi_{n}\left(X^{n}, X^{n-1}, X^{0}\right) \xrightarrow{\partial} \pi_{n-1}\left(X^{n-1}, X^{n-2}, X^{0}\right) \\
& \xrightarrow[\rightarrow]{\partial} \ldots \xrightarrow{\partial} \pi_{2}\left(X^{2}, X^{1}, X^{0}\right) \xrightarrow{\partial} \pi_{1}\left(X^{1}, X^{0}\right)
\end{aligned}
$$

is a totally free crossed complex with object set X_{0}.
The nerve $\mathcal{N C}$ of the crossed complex

$$
\mathcal{C}=\ldots \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} C_{2} \xrightarrow{\partial} C_{1}
$$

is the simplicial sets given by all maps $\Pi(\Delta(n)) \rightarrow \mathcal{C}$.

The homotopy groups of the realisation of $\mathcal{N C}$ coincide with the homology groups of C

Fundamental crossed complexes and nerves

Theorem (Brown-Higgins)
Let X be a CW-complex. Then the sequence

$$
\begin{aligned}
& \Pi(X):=\ldots \xrightarrow{\partial} \pi_{n}\left(X^{n}, X^{n-1}, X^{0}\right) \xrightarrow{\partial} \pi_{n-1}\left(X^{n-1}, X^{n-2}, X^{0}\right) \\
& \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} \pi_{2}\left(X^{2}, X^{1}, X^{0}\right) \xrightarrow{\partial} \pi_{1}\left(X^{1}, X^{0}\right)
\end{aligned}
$$

is a totally free crossed complex with object set X_{0}.
The nerve $\mathcal{N C}$ of the crossed complex

$$
\mathcal{C}=\ldots \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} C_{2} \xrightarrow{\partial} C_{1}
$$

is the simplicial sets given by all maps $\Pi(\Delta(n)) \rightarrow \mathcal{C}$.

The homotopy groups of the realisation of $\mathcal{N C}$ coincide with the homology groups of \mathcal{C}.

Fundamental crossed complexes and nerves

Theorem (Brown-Higgins)

Let X be a CW-complex. Then the sequence

$$
\begin{aligned}
& \Pi(X):=\ldots \xrightarrow{\partial} \pi_{n}\left(X^{n}, X^{n-1}, X^{0}\right) \xrightarrow{\partial} \pi_{n-1}\left(X^{n-1}, X^{n-2}, X^{0}\right) \\
& \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} \pi_{2}\left(X^{2}, X^{1}, X^{0}\right) \xrightarrow{\partial} \pi_{1}\left(X^{1}, X^{0}\right)
\end{aligned}
$$

is a totally free crossed complex with object set X_{0}.
The nerve $\mathcal{N C}$ of the crossed complex

$$
\mathcal{C}=\ldots \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} C_{2} \xrightarrow{\partial} C_{1}
$$

is the simplicial sets given by all maps $\Pi(\Delta(n)) \rightarrow \mathcal{C}$.
Theorem (Brown-Higgins)
The homotopy groups of the realisation of $\mathcal{N C}$ coincide with the homology groups of \mathcal{C}.

\mathcal{C}-colourings (\mathcal{C} a crossed complex)

Let M be a manifold with triangulation t

Let M_{t} be corresponding CW-complex.

\mathcal{C}-colourings (\mathcal{C} a crossed complex)

Let M be a manifold with triangulation t.

\mathcal{C}-colourings (\mathcal{C} a crossed complex)

Let M be a manifold with triangulation t. Let M_{t} be corresponding CW-complex. Consider:

\mathcal{C}-colourings (\mathcal{C} a crossed complex)

Let M be a manifold with triangulation t.
Let M_{t} be corresponding CW-complex. Consider:

$$
\mathcal{C}=\ldots \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} C_{2} \xrightarrow{\partial} C_{1}
$$

Maps $f: \Pi\left(M_{t}\right) \rightarrow \mathcal{C}$ are in 1-to-1 correspondence with \mathcal{C}-colorings:

\mathcal{C}-colourings (\mathcal{C} a crossed complex)

Let M be a manifold with triangulation t.
Let M_{t} be corresponding CW-complex. Consider:

$$
\mathcal{C}=\ldots \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} C_{2} \xrightarrow{\partial} C_{1}
$$

Maps $f: \Pi\left(M_{t}\right) \rightarrow \mathcal{C}$ are in 1-to-1 correspondence with \mathcal{C}-colorings:

\mathcal{C}-colourings (\mathcal{C} a crossed complex)

Let M be a manifold with triangulation t.
Let M_{t} be corresponding CW-complex. Consider:

$$
\mathcal{C}=\ldots \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} C_{2} \xrightarrow{\partial} C_{1}
$$

Maps $f: \Pi\left(M_{t}\right) \rightarrow \mathcal{C}$ are in 1-to-1 correspondence with \mathcal{C}-colorings:

- a map $f_{0}: \operatorname{Vertices}\left(M_{t}\right) \rightarrow C_{0}$

\mathcal{C}-colourings (\mathcal{C} a crossed complex)

Let M be a manifold with triangulation t.
Let M_{t} be corresponding CW-complex. Consider:

$$
\mathcal{C}=\ldots \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} C_{2} \xrightarrow{\partial} C_{1}
$$

Maps $f: \Pi\left(M_{t}\right) \rightarrow \mathcal{C}$ are in 1-to-1 correspondence with \mathcal{C}-colorings:

- a map $f_{0}: \operatorname{Vertices}\left(M_{t}\right) \rightarrow C_{0}$
- a map $f_{1}: \operatorname{edges}\left(M_{t}\right) \rightarrow C_{1}$, looking like:

$$
f_{0}\left(v_{0}\right) \xrightarrow{f_{1}(\gamma)} f_{0}\left(v_{1}\right) \text { at each edge } v_{0} \xrightarrow{\gamma} v_{1} \text {. of } M_{t}
$$

\mathcal{C}-colourings (\mathcal{C} a crossed complex)

Let M be a manifold with triangulation t.
Let M_{t} be corresponding CW-complex. Consider:

$$
\mathcal{C}=\ldots \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} C_{2} \xrightarrow{\partial} C_{1}
$$

Maps $f: \Pi\left(M_{t}\right) \rightarrow \mathcal{C}$ are in 1-to-1 correspondence with \mathcal{C}-colorings:

- a map $f_{0}: \operatorname{Vertices}\left(M_{t}\right) \rightarrow C_{0}$
- a map $f_{1}: \operatorname{edges}\left(M_{t}\right) \rightarrow C_{1}$, looking like:

$$
f_{0}\left(v_{0}\right) \xrightarrow{f_{1}(\gamma)} f_{0}\left(v_{1}\right) \text { at each edge } v_{0} \xrightarrow{\gamma} v_{1} \text {. of } M_{t}
$$

\mathcal{C}-colourings (\mathcal{C} a crossed complex)

Let M be a manifold with triangulation t.
Let M_{t} be corresponding CW-complex. Consider:

$$
\mathcal{C}=\ldots \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} C_{2} \xrightarrow{\partial} C_{1}
$$

Maps $f: \Pi\left(M_{t}\right) \rightarrow \mathcal{C}$ are in 1-to-1 correspondence with \mathcal{C}-colorings:

- a map $f_{0}: \operatorname{Vertices}\left(M_{t}\right) \rightarrow C_{0}$
- a map $f_{1}: \operatorname{edges}\left(M_{t}\right) \rightarrow C_{1}$, looking like:

$$
f_{0}\left(v_{0}\right) \xrightarrow{f_{1}(\gamma)} f_{0}\left(v_{1}\right) \text { at each edge } v_{0} \xrightarrow{\gamma} v_{1} \text {. of } M_{t}
$$

- a map f_{2} : triangles $\left(M_{t}\right) \rightarrow C_{2}$, looking like:

\mathcal{C}-colourings (\mathcal{C} a crossed complex)

Let M be a manifold with triangulation t.
Let M_{t} be corresponding CW-complex. Consider:

$$
\mathcal{C}=\ldots \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} C_{2} \xrightarrow{\partial} C_{1}
$$

Maps $f: \Pi\left(M_{t}\right) \rightarrow \mathcal{C}$ are in 1-to-1 correspondence with \mathcal{C}-colorings:

- a map $f_{0}: \operatorname{Vertices}\left(M_{t}\right) \rightarrow C_{0}$
- a map $f_{1}: \operatorname{edges}\left(M_{t}\right) \rightarrow C_{1}$, looking like:

$$
f_{0}\left(v_{0}\right) \xrightarrow{f_{1}(\gamma)} f_{0}\left(v_{1}\right) \text { at each edge } v_{0} \xrightarrow{\gamma} v_{1} \text {. of } M_{t}
$$

- a map f_{2} : triangles $\left(M_{t}\right) \rightarrow C_{2}$, looking like:

[^0]
\mathcal{C}-colourings (\mathcal{C} a crossed complex)

Let M be a manifold with triangulation t.
Let M_{t} be corresponding CW-complex. Consider:

$$
\mathcal{C}=\ldots \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \ldots \ldots \xrightarrow{\partial} C_{2} \xrightarrow{\partial} C_{1}
$$

Maps $f: \Pi\left(M_{t}\right) \rightarrow \mathcal{C}$ are in 1-to-1 correspondence with \mathcal{C}-colorings:

- a map $f_{0}: \operatorname{Vertices}\left(M_{t}\right) \rightarrow C_{0}$
- a map $f_{1}: \operatorname{edges}\left(M_{t}\right) \rightarrow C_{1}$, looking like:

$$
f_{0}\left(v_{0}\right) \xrightarrow{f_{1}(\gamma)} f_{0}\left(v_{1}\right) \text { at each edge } v_{0} \xrightarrow{\gamma} v_{1} \text {. of } M_{t}
$$

- a map f_{2} : triangles $\left(M_{t}\right) \rightarrow C_{2}$, looking like:

Rule: boundary of element associated to a $n+1$-simplex is the n dimensional holonomy around boundary of simplex.

Calculation of Quinn $\mathcal{F}_{\mathbb{B}}^{(s)}$ for $\mathbb{B}=|N(\mathcal{C})|$.

Let \mathcal{C} be a pointed homotopically finite crossed complex
Hence $\mathbb{B}:=|\mathcal{N C}|$ is a homotopically finite space.

Calculation of Quinn $\mathcal{F}_{\mathbb{B}}^{(s)}$ for $\mathbb{B}=|N(\mathcal{C})|$.

Let \mathcal{C} be a pointed homotopically finite crossed complex Hence $\mathbb{B}:=|\mathcal{N C}|$ is a homotopically finite space.

Calculation of Quinn $\mathcal{F}_{\mathbb{B}}^{(s)}$ for $\mathbb{B}=|N(\mathcal{C})|$.

Let \mathcal{C} be a pointed homotopically finite crossed complex Hence $\mathbb{B}:=|\mathcal{N C}|$ is a homotopically finite space.

Theorem (Martins/Porter (following Brown-Higgins)) Let A be a compact n-manifold with a triangulation t. Then

Calculation of Quinn $\mathcal{F}_{\mathbb{B}}^{(s)}$ for $\mathbb{B}=|N(\mathcal{C})|$.

Let \mathcal{C} be a pointed homotopically finite crossed complex Hence $\mathbb{B}:=|\mathcal{N C}|$ is a homotopically finite space.
Theorem (Martins/Porter (following Brown-Higgins))
Let A be a compact n-manifold with a triangulation t. Then
$\mathcal{F}_{\mathbb{B}}^{(s)}(A)=\mathbb{C}\left(\pi_{0}\left(\operatorname{CRS}\left(\Pi\left(A_{t}\right), \mathcal{C}\right)\right)\right.$.

Calculation of Quinn $\mathcal{F}_{\mathbb{B}}^{(s)}$ for $\mathbb{B}=|N(\mathcal{C})|$.

Let \mathcal{C} be a pointed homotopically finite crossed complex Hence $\mathbb{B}:=|\mathcal{N C}|$ is a homotopically finite space.

Theorem (Martins/Porter (following Brown-Higgins))
Let A be a compact n-manifold with a triangulation t. Then

$$
\mathcal{F}_{\mathbb{B}}^{(s)}(A)=\mathbb{C}\left(\pi_{0}\left(\operatorname{CRS}\left(\Pi\left(A_{t}\right), \mathcal{C}\right)\right)\right.
$$

Here $\operatorname{CRS}(-,-)$ is internal-hom in the cat. of crossed complexes.

Calculation of Quinn $\mathcal{F}_{\mathbb{B}}^{(s)}$ for $\mathbb{B}=|N(\mathcal{C})|$.

Let \mathcal{C} be a pointed homotopically finite crossed complex Hence $\mathbb{B}:=|\mathcal{N C}|$ is a homotopically finite space.

Theorem (Martins/Porter (following Brown-Higgins))
Let A be a compact n-manifold with a triangulation t. Then

$$
\mathcal{F}_{\mathbb{B}}^{(s)}(A)=\mathbb{C}\left(\pi_{0}\left(\operatorname{CRS}\left(\Pi\left(A_{t}\right), \mathcal{C}\right)\right)\right.
$$

Here CRS(,-) is internal-hom in the cat. of crossed complexes.

Calculation of Quinn $\mathcal{F}_{\mathbb{B}}^{(s)}$ for $\mathbb{B}=|N(\mathcal{C})|$.

Let \mathcal{C} be a pointed homotopically finite crossed complex Hence $\mathbb{B}:=|\mathcal{N C}|$ is a homotopically finite space.

Theorem (Martins/Porter (following Brown-Higgins))
Let A be a compact n-manifold with a triangulation t. Then

$$
\mathcal{F}_{\mathbb{B}}^{(s)}(A)=\mathbb{C}\left(\pi_{0}\left(\operatorname{CRS}\left(\Pi\left(A_{t}\right), \mathcal{C}\right)\right)\right.
$$

Here CRS(_, _) is internal-hom in the cat. of crossed complexes.
In particular a basis of $\mathcal{F}_{\mathbb{R}}^{(s)}(A)$ consists of equivalence classes of \mathcal{C}-colourings of A_{t} up to 'gauge transformations' of all orders.

Calculation of Quinn $\mathcal{F}_{\mathbb{B}}^{(s)}$ for $\mathbb{B}=|N(\mathcal{C})|$.

Let \mathcal{C} be a pointed homotopically finite crossed complex Hence $\mathbb{B}:=|\mathcal{N C}|$ is a homotopically finite space.
Theorem (Martins/Porter (following Brown-Higgins))
Let A be a compact n-manifold with a triangulation t. Then

$$
\mathcal{F}_{\mathbb{B}}^{(s)}(A)=\mathbb{C}\left(\pi_{0}\left(\operatorname{CRS}\left(\Pi\left(A_{t}\right), \mathcal{C}\right)\right)\right.
$$

Here CRS(_, _) is internal-hom in the cat. of crossed complexes.
In particular a basis of $\mathcal{F}_{\mathbb{B}}^{(s)}(A)$ consists of equivalence classes of \mathcal{C}-colourings of A_{t} up to 'gauge transformations' of all orders.

Note $\operatorname{CRS}\left(\Pi\left(A_{t}\right), \mathcal{C}\right)$ is the crossed complexes of all maps f and their homotopies / natural transformations of all orders.

Calculation of Quinn $\mathcal{F}_{\mathbb{B}}^{(s)}$ for $\mathbb{B}=|N(\mathcal{C})|$.

Let \mathcal{C} be a pointed homotopically finite crossed complex Hence $\mathbb{B}:=|\mathcal{N C}|$ is a homotopically finite space.
Theorem (Martins/Porter (following Brown-Higgins))
Let A be a compact n-manifold with a triangulation t. Then

$$
\mathcal{F}_{\mathbb{B}}^{(s)}(A)=\mathbb{C}\left(\pi_{0}\left(\operatorname{CRS}\left(\Pi\left(A_{t}\right), \mathcal{C}\right)\right)\right.
$$

Here CRS(_, _) is internal-hom in the cat. of crossed complexes.
In particular a basis of $\mathcal{F}_{\mathbb{B}}^{(s)}(A)$ consists of equivalence classes of \mathcal{C}-colourings of A_{t} up to 'gauge transformations' of all orders.

Note $\operatorname{CRS}\left(\Pi\left(A_{t}\right), \mathcal{C}\right)$ is the crossed complexes of all maps $f: \Pi\left(A_{t}\right) \rightarrow \mathcal{C}$ and their homotopies / natural transformations of all orders.

Calculation of Quinn $\mathcal{F}_{\mathbb{B}}^{(s)}$ for $\mathbb{B}=|N(\mathcal{C})|$.

Let \mathcal{C} be a pointed homotopically finite crossed complex Hence $\mathbb{B}:=|\mathcal{N C}|$ is a homotopically finite space.

Theorem (Martins/Porter (following Brown-Higgins))
Let A be a compact n-manifold with a triangulation t. Then

$$
\mathcal{F}_{\mathbb{B}}^{(s)}(A)=\mathbb{C}\left(\pi_{0}\left(\operatorname{CRS}\left(\Pi\left(A_{t}\right), \mathcal{C}\right)\right)\right.
$$

Here $\operatorname{CRS}\left(-\right.$, _ $^{\prime}$ is internal-hom in the cat. of crossed complexes.
In particular a basis of $\mathcal{F}_{\mathbb{B}}^{(s)}(A)$ consists of equivalence classes of \mathcal{C}-colourings of A_{t} up to 'gauge transformations' of all orders.

Note $\operatorname{CRS}\left(\Pi\left(A_{t}\right), \mathcal{C}\right)$ is the crossed complexes of all maps $f: \Pi\left(A_{t}\right) \rightarrow \mathcal{C}$ and their homotopies / natural transformations of all orders.
This relates to GS degeneracy of higher Kitaev models.

Calculation of Quinn $\mathcal{F}_{\mathbb{B}}^{(s)}$ for $\mathbb{B}=|N(\mathcal{C})|$.

Consider a cobordism

Consider a triangulation t of triad $(M ; A, B)$.

Calculation of Quinn $\mathcal{F}_{\mathbb{B}}^{(s)}$ for $\mathbb{B}=|N(\mathcal{C})|$.
Consider a cobordism

Consider a triangulation t of triad $(M ; A, B)$.

Calculation of Quinn $\mathcal{F}_{\mathbb{B}}^{(s)}$ for $\mathbb{B}=|N(\mathcal{C})|$.

Consider a cobordism

Consider a triangulation t of triad $(M ; A, B)$.
Theorem (Martins/Porter (following Brown-Higgins))
Given $f: \Pi\left(A_{t}\right) \rightarrow \mathcal{C}$ and $f^{\prime}: \Pi\left(A_{t}\right) \rightarrow \mathcal{C}$

Calculation of Quinn $\mathcal{F}_{\mathbb{B}}^{(s)}$ for $\mathbb{B}=|N(\mathcal{C})|$.

Consider a cobordism

Consider a triangulation t of triad $(M ; A, B)$.
Theorem (Martins/Porter (following Brown-Higgins))
Given $f: \Pi\left(A_{t}\right) \rightarrow \mathcal{C}$ and $f^{\prime}: \Pi\left(A_{t}\right) \rightarrow \mathcal{C}$

Calculation of Quinn $\mathcal{F}_{\mathbb{B}}^{(s)}$ for $\mathbb{B}=|N(\mathcal{C})|$.

Consider a cobordism

Consider a triangulation t of triad $(M ; A, B)$.
Theorem (Martins/Porter (following Brown-Higgins))
Given $f: \Pi\left(A_{t}\right) \rightarrow \mathcal{C}$ and $f^{\prime}: \Pi\left(A_{t}\right) \rightarrow \mathcal{C}$

Calculation of Quinn $\mathcal{F}_{\mathbb{B}}^{(s)}$ for $\mathbb{B}=|N(\mathcal{C})|$.

Consider a cobordism

Consider a triangulation t of triad $(M ; A, B)$.
Theorem (Martins/Porter (following Brown-Higgins))
Given $f: \Pi\left(A_{t}\right) \rightarrow \mathcal{C}$ and $f^{\prime}: \Pi\left(A_{t}\right) \rightarrow \mathcal{C}$
$\langle[f]| \mathcal{F}_{\mathbb{B}}^{(s)}(M)\left|\left[f^{\prime}\right]\right\rangle=\#\{H: \Pi\left(M_{t}\right) \rightarrow \mathcal{C}: \underbrace{\Pi\left(A_{t}\right)}_{\mathbb{C}}$

Calculation of Quinn $\mathcal{F}_{\mathbb{B}}^{(s)}$ for $\mathbb{B}=|N(\mathcal{C})|$.

Consider a cobordism

Consider a triangulation t of triad $(M ; A, B)$.
Theorem (Martins/Porter (following Brown-Higgins))
Given $f: \Pi\left(A_{t}\right) \rightarrow \mathcal{C}$ and $f^{\prime}: \Pi\left(A_{t}\right) \rightarrow \mathcal{C}$
$\langle[f]| \mathcal{F}_{\mathbb{B}}^{(s)}(M)\left|\left[f^{\prime}\right]\right\rangle=\#\{H: \Pi\left(M_{t}\right) \rightarrow \mathcal{C}: \underbrace{\Pi\left(A_{t}\right)}_{\mathbb{C}}$
\times factors depending only on number of simplices of A_{t}, B_{t}, M_{t} and \mathcal{C}.

References:

- Bullivant A, Calçada M, Kádár Z, Martin P, and Faria Martins J: Higher lattices, discrete two-dimensional holonomy and topological phases in (3+1) D with higher gauge symmetry, arXiv:1702.00868.
- Bullivant A, Calçada M, Kádár Z, Martin P, and Faria Martins J: Topological phases from higher gauge symmetry in 3+1 dimensions. PHYSICAL REVIEW B 95, 155118 (2017)
- Faria Martins J, Picken R..: Surface Holonomy for Non-Abelian 2-Bundles via Double Groupoids, Advances in Mathematics Volume 226, Issue 4, 1 March 2011, Pages 3309-3366
- Faria Martins J, Porter T : On Yetter's Invariant and an Extension of the Dijkgraaf-Witten Invariant to Categorical Groups, Theory and Application of Categories, Vol. 18, 2007, No. 4, pp 118-150.
- Brown, P. Higgins, R Sivera: Nonabelian algebraic topology. Filtered spaces, crossed complexes, cubical homotopy groupoids. With contributions by Christopher D. Wensley and Sergei V. Soloviev. Zurich: European Mathematical Society (EMS) (2011)

[^0]: Rule: boundary of element associated to a $n+1$-simplex is the n dimensional

