Quinn finite total homotopy TQFT as a once-extended TQFT

Geometry, Topology, and Physics Seminar Center for Quantum and Topological Systems, NYUAB

> João Faria Martins (University of Leeds) (Joint work with Tim Porter)

> > Date: 29th March 2023.

Thanks due to Alex Bullivant, Fiona Torzewska and Ben Horton.

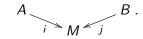
Partially funded by:

- the Leverhulme Trust research project grant: RPG-2018-029: 'Emergent Physics From Lattice Models of Higher Gauge Theory'. (Finished.)
- ► EPSRC Programme grant: EP/W007509/1 'Combinatorial Representation Theory: Discovering the Interfaces of Algebra with Geometry and Topology'.

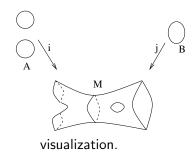
The category of manifolds and cobordisms (sketch)

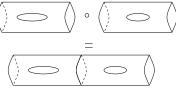
Let $n \in \mathbb{Z}_0^+$. Define symmetric monoidal category $\mathbf{Cob}^{(n,n+1)}$.

- ightharpoonup Objects: closed smooth *n*-manifolds A, B,...
- ▶ Morphisms $[M]: A \rightarrow B$ are equivalence classes of diagrams:



Here M is a smooth (n+1)-manifold, and i and j induce a diffeomorphism $\langle i,j \rangle \colon A \sqcup B \to \partial(M)$.

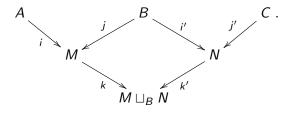




Note: collars are required to construct smooth structure.

The category of manifolds and cobordisms (sketch)

More precisely, the composition of cobordisms is via pushouts:



So
$$([M]: A \rightarrow B) \bullet ([N]: B \rightarrow C) = ([M \sqcup_B N]: A \rightarrow C).$$

Note that smooth structure on $M \sqcup_B N$ is not uniquely defined. But it is unique up to diffeomorphism.

The monoidal structure in $\operatorname{Cob}^{(n,n+1)}$ is induced from the disjoint union of manifolds / cobordisms.

Topological quantum field theories

Definition (TQFT)

Given a non-negative integer $n \in \mathbb{Z}_0^+$, a Topological Quantum Field Theory (TQFT) is a symmetric monoidal functor:

$$\mathcal{F} \colon \mathbf{Cob}^{(n,n+1)} \to \mathbf{Vect}.$$

The monoidal structure in Vect is given by usual tensor product.

Plan of the talk

In this talk I will:

1. Review Quinn's finite total homotopy TQFT, where $n \in \mathbb{Z}_{\geq 0}$,

$$\mathcal{F}_{\mathcal{R}} \colon \operatorname{Cob}^{(n,n+1)} \to \operatorname{Vect}.$$

Here \mathcal{R} is a "homotopically finite space", a parameter.

Cf. Frank Quinn. Lectures on axiomatic topological quantum field theory. In Geometry and quantum field theory. (1995)

- 2. Explain the combinatorial calculation of $\mathcal{F}_{\mathcal{R}}$, for \mathcal{R} classifying space of a homotopy finite strict ω -groupoid (represented by a crossed complex of groupoids).
- 3. Explain construction / computation of once-extended $\mathcal{F}_{\mathcal{R}}$.

Homotopy finite spaces

Definition (Homotopy finite space)

A space X is called homotopy finite (HF) if:

- X has only a finite number of path components.
- ▶ Given a path-component K of X, exists $n \in \mathbb{N}$ such that:
 - $ightharpoonup \pi_i(K)$ is trivial, if i > n.
 - \blacktriangleright $\pi_i(K)$ finite, if $i = 1, \ldots, n$.

Equivalently, X has finitely many path-components, and finitely many non-trivial homotopy groups, all of which are finite.

Classifying spaces of groups, etc

Example

Let G be a finite group. Classifying space B_G is path-connected. Also:

- \blacktriangleright $\pi_1(B_G,*)\cong G$, and
- ▶ $\pi_i(B_G, *) = 0$, if $i \ge 2$.

So B_G is a finite 1-type. So B_G is a HF space.

More generally, if G is a finite groupoid, or finite 2-group, then classifying space B_G is homotopy finite

More examples later.

The homotopy content of a homotopy finite space

Definition (Homotopy content)

If X is homotopy finite, the homotopy content of X is:

$$\chi^{\pi}(X) = \sum_{K \in \pi_0(X)} \frac{|\pi_2(K)| |\pi_4(K)| |\pi_6(K)| \dots}{|\pi_1(K)| |\pi_3(K)| |\pi_5(K)| \dots} \in \mathbb{Q}.$$

Here $\pi_0(X)$ is the set of path-components of X.

Example (Classifying spaces of finite groups) If G is a finite group then $\chi^{\pi}(B_G) = 1/|G|$.

The homotopy content first appeared (I think) in: Frank Quinn. Lectures on axiomatic topological quantum field theory. In Geometry and quantum field theory. (1995)

Some properties HF spaces and their homotopy content

▶ If X and Y are HF, then so are $X \times Y$ and $X \sqcup Y$, and:

$$\chi^{\pi}(X \times Y) = \chi^{\pi}(X) \times \chi^{\pi}(Y),$$

$$\chi^{\pi}(X \sqcup Y) = \chi^{\pi}(X) + \chi^{\pi}(Y).$$

Let $p: E \to B$ be a fibration of HF spaces. Let $b \in B$. The fibre $F_b := p^{-1}(b)$ is HF.

Moreover if *B* is path-connected then **(main powerhouse)**:

$$\chi^{\pi}(E) = \chi^{\pi}(B) \times \chi^{\pi}(F_b).$$

Cf. John C. Baez and James Dolan. From finite sets to Feynman diagrams. In Mathematics unlimited-2001 and beyond (2001) Imma Gálvez-Carrillo, Joachim Kock, Andrew Tonks: Homotopy linear algebra. P ROY SOC EDINB A. (2018).

Function spaces and homotopy finite spaces

Theorem (Quinn)

Let M be a compact CW-complex, and \mathcal{R} a homotopy finite space. Then the function space, below, is homotopy finite:

$$TOP(M, \mathcal{R}) = \{f : M \to \mathcal{R} \mid f \text{ is continuous}\}.$$

In particular if M is a compact smooth manifold.

Note that $TOP(M, \mathcal{R})$ is given the k-ification of the compact-open topology on the space of maps $M \to \mathcal{R}$.

We will use the notation,

$$TOP(M, \mathcal{R}) = \mathcal{R}^M$$
,

and $PC_x(X)$ denotes the path component of x in a space X.

Quinn's (finite total homotopy) TQFT

Let \mathcal{R} be a HF-space. Let $s \in \mathbb{C}$.

Functor: $\mathcal{F}_{\mathcal{P}}^{(s)}$: $\operatorname{Cob}^{(n,n+1)} \to \operatorname{Vect}$.

► If *A* is an *n*-manifold then:

$$\mathcal{F}^{(s)}_{\mathcal{R}}(A) = \mathbb{C}\big(\pi_0(\mathcal{R}^A)\big) = \mathbb{C}\{\text{homotopy classes of maps } A o \mathcal{R}\}.$$

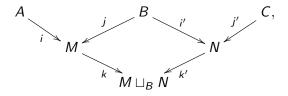
Matrix elements assigned to cobordisms, A = B,

$$\left\langle [f] \middle| \mathcal{F}^{(s)}_{\mathcal{R}}(M) \middle| [f'] \right\rangle := \chi^{\pi} \left\{ H \colon M \to \mathcal{R} : \begin{array}{c} A & i & j & B \\ M & M & f' & f' \\ & \downarrow & \text{commutes} \end{array} \right\}$$

$$\times \chi^{\pi} (\mathrm{PC}_f(\mathcal{R}^A))^s \chi^{\pi} (\mathrm{PC}_{f'}(\mathcal{R}^B))^{1-s}.$$

Proof $\mathcal{F}_{\mathcal{R}} \colon \mathbf{Cob}^{(n,n+1)} o \mathbf{Vect}$ is a functor

Given composable cobordisms,



then
$$\mathcal{F}_{\mathcal{R}}(N\colon B\to C)\circ\mathcal{F}_{\mathcal{R}}(M\colon A\to B)=\mathcal{F}_{\mathcal{R}}(M\sqcup_B N\colon A\to C).$$

▶ If Σ is a submanifold of W, then restriction map, is a fibration

$$\mathrm{TOP}(W, \mathcal{R}) \to \mathrm{TOP}(\Sigma, \mathcal{R})$$
 $f \mapsto f_{|\Sigma}.$

▶ If $p: E \to X$ is any fibration of HF spaces then

$$\chi^{\pi}(E) = \sum_{[x] \in \pi_0(X)} \chi^{\pi}(\rho^{-1}(x)) \ \chi^{\pi}(\operatorname{PC}_x(X)).$$

Discussion: Quinn finite total homotopy TQFT

Note: Quinn TQFT $\mathcal{F}_{\mathcal{R}}$ can be twisted by classes in $H^{n+1}(\mathcal{R}, U(1))$.

▶ Let G be a finite group. Let \mathcal{R} be classifying space of G. Then $\mathcal{F}_{\mathcal{R}}$ coincides with Dijkgraaf-Witten TQFT.

Explicitly calculable. Related to topological gauge theory. Related to Kitaev quantum double model.

▶ Let G be a finite 2 group. Let R be classifying space of G.
F_R coincides with (twisted) Yetter TQFT (____ / Porter).
Explicitly calculable. Related to topological higher gauge theory.
Related to higher Kitaev models formulated with 2-groups.

This 'computability' of Quinn generalises.

Quinn finite total homotopy TQFT is 'computable'

Theorem (Ellis)

Any connected homotopy finite space is homotopic to a space of the form $|\overline{W}(G)|$, where G is a finite simplicial group.

Graham Ellis: Spaces with finitely many non-trivial homotopy groups all of which are finite. Topology (1997)

Let $\mathcal{R} = |\overline{W}(G)|$, and $M \colon A \to B$ a triangulated cobordism. Can compute $\mathcal{F}_{\mathcal{R}}(M \colon A \to B)$ using simplicial homotopy tools.

Quinn TQFT,

$$\mathcal{F}_{\mathcal{R}} \colon \operatorname{Cob}^{(n,n+1)} \to \operatorname{Vect},$$

thus is 'computable' in finite time.

The case of classifying spaces of ω -groupoids

Remainder of this talk.

We will mainly work in the case when:

 ${\cal R}$ is the classifying space of a ω -groupoid / crossed complex.

E.g. \mathcal{R} is the classifying space of a strict 2-group.

In this case the computation of $\mathcal{F}_{\mathcal{R}}$ is particularly simple.

Warning: Crossed complexes do not model all homotopy types. For instances, spaces modelled by crossed complexes have trivial Whitehead products.

Crossed modules of groups (as models for 2-types)

Definition (Crossed module)

A *crossed module* $G = (\partial: E \to G, \triangleright)$ is given by:

- ▶ A group map (i.e. a homomorphism) $\partial \colon E \to G$.
- ▶ A left action \triangleright of G on E, by automorphisms, such that the following conditions (*Peiffer equations*) hold:

Peiffer 1
$$\partial(g \triangleright e) = g \partial(e) g^{-1}$$
, where $g \in G$, $e \in E$;

Peiffer 2 $\partial(e) \triangleright f = e f e^{-1}$, where $e, f \in E$.

Theorem (Whitehead-MacLane)

Homotopy category of crossed modules is equivalent to homotopy category of pointed 2-types. (Pointed space with $\pi_i = 0$, if $i \ge 3$.)

Crossed complexes

A crossed complex is given by a complex of groups,

$$\mathcal{C} := \dots \xrightarrow{\partial} C_n \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \dots \xrightarrow{\partial} C_3 \xrightarrow{\partial} E \xrightarrow{\partial} G,$$

such that:

- \blacktriangleright we have a crossed module, $(\partial \colon E \to G, \triangleright)$, so G acts on E.
- ▶ all groups for C_i , for $i \ge 3$ are abelian.
- we have an action of G on all groups C_i , $i \ge 2$
- all boundary maps preserve actions,
- ▶ the action of $\partial(E) \leq G$ is trivial on all groups C_i , $i \geq 3$.

Note: Both notions, crossed modules and crossed complexes, extended to the groupoid setting.

Monoidal closed category Crs

The category ${\rm Crs}$ of crossed complexes is equivalent to the category of strict omega-groupoids (Brown–Higgins).

Also: Crs is a monoidal closed category (Brown-Higgins).

- ▶ Given \mathcal{A} and \mathcal{B} we can form tensor product $\mathcal{A} \otimes \mathcal{B}$.
- ▶ Given \mathcal{A} and \mathcal{B} we have "function space" $CRS(\mathcal{A}, \mathcal{B}) = \mathcal{B}^{\mathcal{A}}$.
- ▶ Natural equivalence $Crs(A \otimes B, C) \cong Crs(A, C^B)$.

Example

Let G and H be finite groups, seen as a crossed complexes:

- ▶ $G \otimes H$ is the free product G * H,
- $ightharpoonup \operatorname{CRS}(G, H)$ is the groupoid with:
 - ▶ objects maps $f: G \rightarrow H$,
 - ▶ morphisms $f \stackrel{h}{\rightarrow} f'$ are elements of H conjugating f into f'.

Fundamental crossed complexes of CW-complexes

Theorem (Brown-Higgins)

Let X be a CW-complex. Then the sequence of groupoids

$$\Pi(X) := \dots \xrightarrow{\partial} \pi_n(X^n, X^{n-1}, X^0) \xrightarrow{\partial} \pi_{n-1}(X^{n-1}, X^{n-2}, X^0)$$
$$\xrightarrow{\partial} \dots \dots \xrightarrow{\partial} \pi_2(X^2, X^1, X^0) \xrightarrow{\partial} \pi_1(X^1, X^0) \xrightarrow{s} X_0.$$

is a totally free crossed complex, of groupoids.

Classifying spaces of crossed complexes

Definition (Nerve and classifying space of crossed complexes)

The nerve \mathcal{NC} of the crossed complex, \mathcal{C} , is the simplicial set \mathcal{NC} such that

$$(\mathcal{NC})_n = \mathsf{hom}_{\mathrm{Crs}} (\Pi(\Delta(n)), \mathcal{C}).$$

The classifying space of C is $B_C := |\mathcal{NC}|$.

Theorem (Brown-Higgins)

The homotopy groups of B_C are the homology groups of C.

So if C is finite then B_C is a HF space.

Calculation of Quinn's $\mathcal{F}_{\mathcal{R}}$ for $\mathcal{R} = B_{\mathcal{C}}$.

Let C be a homotopically finite crossed complex Hence classifying space B_C is a homotopically finite space.

Theorem (____/Porter, following Brown-Higgins & Tonks)

Let A be a closed n-manifold with a triangulation. Then

$$\mathcal{F}_{B_{\mathcal{C}}}(A) \cong \mathbb{C}\pi_0(\mathcal{C}^{\Pi(A_t)}).$$

A basis of $\mathcal{F}_{\mathcal{B}_{\mathcal{C}}}(A)$ hence consists of morphisms $f: \Pi(A_t) \to \mathcal{C}$, considered up to homotopy / pseudonatural equivalence.

Combinatorial calculation of Quinn's $\mathcal{F}_{\mathcal{B}_{\mathcal{C}}}$

Consider a cobordism,

$$A \longrightarrow B$$

and a triangulation t of M extending triangulations A and B.

Theorem (___/Porter, following Brown-Higgins & Tonks)

Given crossed complex maps $f: \Pi(A_t) \to \mathcal{C}$ and $f': \Pi(A_t) \to \mathcal{C}$

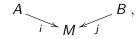
$$\left\langle [f] \Big| \mathcal{F}_{\mathcal{B}_{\mathcal{C}}}(M) \Big| [f'] \right\rangle = \# \left\{ H \colon \Pi(M_t) \to \mathcal{C} : \begin{array}{c} \Pi(A_t) & \Pi(M_t) \\ \downarrow & \Pi(M_t) \\ \downarrow & \downarrow \\ \mathcal{C} & commutes \end{array} \right\}$$

 \times factor depending only on number of simplices of A_t, B_t, M_t ; and C.

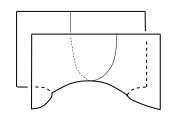
Extended cobordisms

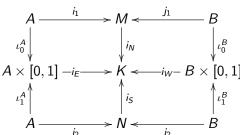
Let $Cob^{(n,n+1,n+2)}$ be the bicategory with:

- ▶ Objects *n*-dimensional closed smooth manifolds *A*, *B*, . . .
- ▶ 1-morphisms $M: A \rightarrow B$ are (n, n + 1)-cobordisms,



▶ 2-morphisms [K]: $(M: A \rightarrow B) \implies (N: A \rightarrow B)$ are (n, n+1, n+2)-extended-cobordisms (up to diffeomorphism):





Once-entended TQFTs

Definition

A once-extended TQFT is a symmetric monoidal bifunctor,

$$\mathcal{F} \colon \operatorname{Cob}^{(n,n+1,n+2)} \to \operatorname{Alg}.$$

Here Alg is some 'algebraic' symmetric monoidal bicategory.

(Once)-entended TQFTs

Two target bicategories for symmetric monoidal bifunctors

$$\mathcal{F} \colon \operatorname{Cob}^{(n,n+1,n+2)} \to \operatorname{Alg}.$$

- Alg = Mor, with:
 - ightharpoonup objects algebras A, B, ...
 - ▶ 1-morphisms \mathcal{M} : $\mathcal{A} \to \mathcal{B}$ being $(\mathcal{A}, \mathcal{B})$ -bimodules \mathcal{M} ,
 - ▶ Composition $\mathcal{A} \xrightarrow{\mathcal{M}} \mathcal{B} \xrightarrow{\mathcal{N}} \mathcal{C}$ given $(\mathcal{A}, \mathcal{B})$ -bimodule $\mathcal{M} \otimes_{\mathcal{B}} \mathcal{N}$,
 - ▶ 2-morphisms $(A \xrightarrow{\mathcal{M}} B) \implies (A \xrightarrow{\mathcal{M}'} B)$ are bimodule maps.
- Alg = Prof, with:
 - ightharpoonup objects homotopy finite groupoids \mathcal{G} , \mathcal{H} , ...
 - ▶ 1-morphisms $\mathcal{G} \to \mathcal{H}$ are functors $\mathcal{G}^{op} \times \mathcal{H} \to \mathbf{Vect}$,
 - composition is usual profunctor composition (via coends),
 - 2-morphisms are natural transformations of functors.

Homotopical powerhouse for once-extended Quinn TQFT

Let \mathbf{Top}/\sim be category of spaces and homotopy classes of maps.

Theorem (Classical)

Let $p: E \to X$ be a fibration. We have a functor

Hol:
$$\pi_1(X,X) \to \mathsf{Top}/\sim$$
.

It sends:

- ▶ $x \in X$ to $F_x := p^{-1}(x)$,
- ▶ a morphism $[\gamma]$: $x \rightarrow y$ to:

$$F_{x} \xrightarrow{\text{inc}} E$$

$$(-)\times\{0\} \downarrow \qquad \qquad \downarrow_{\gamma} \qquad \qquad \downarrow_{\gamma}$$

$$F_{x}\times[0,1] \xrightarrow{\text{proj}_{2}} [0,1] \xrightarrow{\gamma} X$$

So $\operatorname{Hol}(\gamma)$ is homotopy class of $L_{\gamma}(-,1) \colon F_{x} \to F_{y}$.

Main theorem: once-extended TQFT

gives rise to 'path-space fibration':

Let ${\mathcal R}$ be a HF space. We have a once-extended TQFT

$$\widehat{\mathcal{Q}}_{\mathcal{R}} \colon \mathbf{Cob}^{(n,n+1,n+2)} \to \mathbf{Prof}.$$

- ▶ If A is an n manifold then $\widehat{\mathcal{Q}}_{\mathcal{R}}(A) = \pi_1(\mathcal{R}^A, \mathcal{R}^A)$.
- ► A cobordism, $M: A \rightarrow B = A$ $A \longrightarrow A$ $A \longrightarrow B$ $A \longrightarrow B$

$$\langle i^*, i^* \rangle : \mathcal{R}^M \to \mathcal{R}^A \times \mathcal{R}^B$$
.

The profunctor, $\widehat{\mathcal{Q}}_{\mathcal{R}}(M:A\to B): \widehat{\mathcal{Q}}_{\mathcal{R}}(A) \not\to \widehat{\mathcal{Q}}_{\mathcal{R}}(B)$, is:

$$\widehat{\mathcal{Q}}_{\mathcal{R}}(A)^{\mathrm{op}} \times \widehat{\mathcal{Q}}_{\mathcal{R}}(B) \xrightarrow{Hol} \mathsf{Top}/\sim \xrightarrow{\pi_0} \mathsf{Set} \xrightarrow{\mathrm{Lin}} \mathsf{Vect}.$$

As per Quinn TQFT from here: non trivial it works this way.

Decorated manifolds

Let \mathcal{R} be a homotopy finite space.

Note that in general $\pi_1(\mathcal{R}^A, \mathcal{R}^A)$ is uncountable: we have one object for each function $f: A \to \mathcal{R}$.

Let us 'reduce' the size of the target groupoids.

Definition (Decorated manifold)

An \mathcal{R} -decorated manifold, $\mathbf{A} = (A, \overline{x}_A)$, is a manifold, A, and a finite subset $\overline{x}_A \subset \mathcal{R}^A$, intersecting each path-component of \mathcal{R}^A .

We have bicategory, $\overline{\text{Cob}}^{(n,n+1,n+2)}$, of \mathcal{R} -decorated manifolds, and (undecorated) cobordisms and extended cobordisms.

Finitary once-extended version of Quinn TQFT

Let \mathcal{R} be a homotopy finite space, n a non-negative integer.

Theorem (Finitary once-extended Quinn TQFT)

We have bifunctor:

$$\overline{\mathcal{Q}}_{\boldsymbol{\mathcal{R}}}\colon \overline{\mathbf{Cob}}^{(n,n+1,n+2)}\to \mathbf{Prof},$$

sending $\mathbf{A} = (A, \overline{x}_A)$ to $\pi_1(\mathcal{R}^A, \overline{x}_A)$.

Note 1: The groupoid $\overline{\mathcal{Q}}_{\mathcal{R}}(\mathbf{A}, \overline{x}_{\mathcal{A}})$ is finite.

Note 2: Let A be an n-manifold.

If \overline{x}_A and \overline{y}_A are different decorations of A then

$$\overline{\mathcal{Q}}_{\mathcal{R}}\Big((A,\overline{x}_A) \xrightarrow{A \times I} (A,\overline{y}_A)\Big)$$

gives a canonical profunctor $\overline{\mathcal{Q}}_{\mathcal{R}}(A, \overline{x}_A) \not \to \overline{\mathcal{Q}}_{\mathcal{R}}(A, \overline{y}_A)$.

Morita valued extended version of Quinn TQFT

Let \mathcal{R} be a homotopy finite space and $n \in \mathbb{Z}_{\geq 0}$.

Theorem (Morita valued once-extended Quinn TQFT)

The symmetric monoidal bifunctor:

$$\overline{\mathcal{Q}}_{\mathcal{R}} \colon \overline{\operatorname{Cob}}^{(n,n+1,n+2)} \to \operatorname{Prof},$$

sending $\mathbf{A} = (A, \overline{x}_A)$ to $\pi_1(\mathcal{R}^A, \overline{x}_A)$,

"linearises" to a bifunctor, denoted:

$$\overline{\mathcal{Q}}_{\mathcal{R}}^{\mathrm{Mor}} \colon \overline{\mathrm{Cob}}^{(n,n+1,n+2)} \to \mathrm{Mor},$$

sending $\mathbf{A} = (A, \overline{x}_A)$ to groupoid algebra $\mathbb{C}(\pi_1(\mathcal{R}^A, \overline{x}_A))$.

The case of crossed complexes / strict omega-groupoids

Suppose that $\mathcal{R} = \mathcal{B}_{\mathcal{C}}$, where \mathcal{C} is a finite crossed complex.

Theorem

If A has a triangulation, t, then A is naturally decorated. Moreover:

$$\overline{\mathcal{Q}}_{\mathcal{B}_{\mathcal{C}}}(A_t) \cong \pi_1(\mathcal{C}^{\Pi(A_t)}),$$

$$\overline{\mathcal{Q}}_{B_{\mathcal{C}}}^{\mathrm{Mor}}(A_t) \cong \mathbb{C}(\pi_1(\mathcal{C}^{\Pi(A_t)})).$$

Note: $\pi_1(\mathcal{C}^{\Pi(A_t)})$ is groupoid of morphisms $\Pi(A_t) \to \mathcal{C}$, and (2-fold homotopy classes of) homotopies between them.

Hence once-extended TQFTs, $\overline{\mathcal{Q}}_{B_{\mathcal{C}}}$ & $\overline{\mathcal{Q}}_{B_{\mathcal{C}}}^{\mathrm{Mor}}$, can be computed.

The case of crossed complexes / strict omega-groupoids

Let $\{A^i\}_{i\in I}$ be set, containing at least one representative of each diffeomorphism class of closed connected n-manifolds.

Choose a triangulation t_i of each $A^{(i)}$.

Let $n \in \mathbb{Z}_{>0}$. There exist once-extended TQFTs,

$$\overline{\mathcal{Q}}_{\mathcal{B}_{\mathcal{C}}} \colon \mathbf{Cob}^{(n,n+1,n+2)} \to \mathbf{Prof},$$

$$\overline{\mathcal{Q}}_{\mathcal{B}_{\mathcal{C}}}^{Mor}\colon \mathbf{Cob}^{(n,n+1,n+2)}\to \mathbf{Mor},$$

such that, for each i:

$$\overline{\mathcal{Q}}_{\mathcal{B}_{\mathcal{C}}}(\mathcal{A}^{(i)}) = \pi_1\Big(\mathcal{C}^{\Pi(\mathcal{A}^{(i)}_{t_i})}\Big), \qquad \overline{\mathcal{Q}}_{\mathcal{B}_{\mathcal{C}}}^{\mathbf{Mor}}(\mathcal{A}^{(i)}) = \mathbb{C}\pi_1\Big(\mathcal{C}^{\Pi(\mathcal{A}^{(i)}_{t_i})}\Big).$$

Bullivant: canonical Morita equivalences if triangulations change.

Some computations

Simplest case. Let G be a finite group.

- ightharpoonup n=0, then $\overline{\mathcal{Q}}_{B_G}(\cdot)=G$, and hence $\overline{\mathcal{Q}}_{B_G}^{\operatorname{Mor}}(.)=\mathbb{C}(G)$,
- ▶ n = 1, then $\overline{Q}_{B_{\mathcal{G}}}(S^1)$ =conjugation groupoid of G, so

$$\overline{\mathcal{Q}}_{\mathcal{B}_{\mathcal{G}}}^{\mathrm{Mor}}(S^{1})$$
 is the quantum double of $\mathbb{C}(\mathcal{G})$.

New proof that there exists a (1,2,3)-extended TQFT sending S^1 to the quantum double of G.

Cf. Jeffrey Morton. *Cohomological twisting of 2-linearization and extended TQFT.* J. Homotopy Relat. Struct. (2015).

- ightharpoonup n=2, then $\overline{\mathcal{Q}}_{B_G}^{\mathbf{Mor}}(S^2)=\mathbb{C}$.
- ▶ n = 2, then $\overline{\mathcal{Q}}_{\mathcal{B}_{\mathcal{G}}}^{\mathbf{Mor}}(S^1 \times S^1)$ is groupoid algebra of action groupoid:

$$\{(a,b)\in G\times G\mid ab=ba\}//G.$$

Some computations

Example

Let $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ be a finite crossed module.

- n=1: $\overline{\mathcal{Q}}_{B_G}(S^1)$ has:
 - ▶ objects: $g \in G$.
 - morphisms equivalence classes of arrows like:

$$g \xrightarrow{[(h,e)]} \partial(e)hgh^{-1}, \quad g,h \in G, \quad e \in E.$$

= groupoid of \mathcal{G} -2-connections on S^1 , with morphisms (2-gauge) equivalence classes of gauge transformation.

Cf. Alex Bullivant and Clement Delcamp. *Tube algebras*, excitations statistics and compactification in gauge models of topological phases. JHEP (2019)

Alex Bullivant and Clement Delcamp. Excitations in strict 2-group higher gauge models of topological phases. JHEP (2020).

Thanks!

Main References:

João Faria Martins and Tim Porter:

- On Yetter's invariant and an extension of the Dijkgraaf-Witten invariant to categorical groups. Theory Appl. Categories (2007)
- ► A categorification of Quinn's finite total homotopy TQFT with application to TQFTs and once-extended TQFTs derived from strict omega-groupoids. arXiv:2301.02491 [math.CT].

Some technical references to results used in the talk.

- ▶ May P: A concise course in Algebraic Topology. Chicago press.
- ► Tonks A: On the Eilenberg–Zilber theorem for crossed complexes. J. Pure Appl. Algebra (2003).
- ▶ Brown R., Higgins P.J.: Colimit Theorems for Relative Homotopy Groups, J. Pure Appl. Algebra (1981).
- R. Brown, P. Higgins, R Sivera: Nonabelian algebraic topology. Filtered spaces, crossed complexes, cubical homotopy groupoids. European Mathematical Society (2011)
- ► H. J. Baues: Combinatorial homotopy and 4-dimensional complexes. Berlin etc.: Walter de Gruyter (1991)