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The category of manifolds and cobordisms (sketch)
Let n ∈ Z+

0 . Define symmmetric monoidal category Cob(n,n+1).

▶ Objects: closed smooth n-manifolds A,B,...

▶ Morphisms [M] : A → B are equivalence classes of diagrams:
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Here M is a smooth (n + 1)-manifold, and
i and j induce a diffeomorphism ⟨i , j⟩ : A ⊔ B → ∂(M).
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visualization.

Composition of morphisms.
Note: collars are required to
construct smooth structure.



The category of manifolds and cobordisms (sketch)

More precisely, the composition of cobordisms is via pushouts:
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So ([M] : A → B) • ([N] : B → C ) = ([M ⊔B N] : A → C ).

Note that smooth structure on M ⊔B N is not uniquely defined.
But it is unique up to diffeomorphism.

The monoidal structure in Cob(n,n+1) is induced from the disjoint
union of manifolds / cobordisms.



Topological quantum field theories

Definition (TQFT)

Given a non-negative integer n ∈ Z+
0 ,

a Topological Quantum Field Theory (TQFT)
is a symmetric monoidal functor:

F : Cob(n,n+1) → Vect.

The monoidal structure in Vect is given by usual tensor product.



Plan of the talk

In this talk I will:

1. Review Quinn’s finite total homotopy TQFT, where n ∈ Z≥0,

FR : Cob(n,n+1) → Vect.

Here R is a “homotopically finite space”, a parameter.

Cf. Frank Quinn. Lectures on axiomatic topological quantum
field theory. In Geometry and quantum field theory. (1995)

2. Explain the combinatorial calculation of FR,
for R classifying space of a homotopy finite strict ω-groupoid
(represented by a crossed complex of groupoids).

3. Explain construction / computation of once-extended FR.



Homotopy finite spaces

Definition (Homotopy finite space)

A space X is called homotopy finite (HF) if:

▶ X has only a finite number of path components.

▶ Given a path-component K of X , exists n ∈ N such that:

▶ πi (K ) is trivial, if i > n.

▶ πi (K ) finite, if i = 1, . . . , n.

Equivalently, X has finitely many path-components, and finitely
many non-trivial homotopy groups, all of which are finite.



Classifying spaces of groups, etc

Example

Let G be a finite group. Classifying space BG is path-connected.
Also:

▶ π1(BG , ∗) ∼= G , and

▶ πi (BG , ∗) = 0, if i ≥ 2.

So BG is a finite 1-type. So BG is a HF space.

More generally, if G is a finite groupoid, or finite 2-group, then
classifying space BG is homotopy finite

More examples later.



The homotopy content of a homotopy finite space

Definition (Homotopy content)

If X is homotopy finite, the homotopy content of X is:

χπ(X ) =
∑

K∈π0(X )

|π2(K )| |π4(K )| |π6(K )| . . .
|π1(K )| |π3(K )| |π5(K )| . . .

∈ Q.

Here π0(X ) is the set of path-components of X .

Example (Classifying spaces of finite groups)

If G is a finite group then χπ(BG ) = 1/|G |.

The homotopy content first appeared (I think) in:
Frank Quinn. Lectures on axiomatic topological quantum field
theory. In Geometry and quantum field theory. (1995)



Some properties HF spaces and their homotopy content

▶ If X and Y are HF, then so are X × Y and X ⊔ Y , and:

χπ(X × Y ) = χπ(X )× χπ(Y ),

χπ(X ⊔ Y ) = χπ(X ) + χπ(Y ).

▶ Let p : E → B be a fibration of HF spaces. Let b ∈ B.
The fibre Fb := p−1(b) is HF.

Moreover if B is path-connected then (main powerhouse):

χπ(E ) = χπ(B)× χπ(Fb).

Cf. John C. Baez and James Dolan. From finite sets to Feynman
diagrams. In Mathematics unlimited-2001 and beyond (2001)

Imma Gálvez-Carrillo, Joachim Kock, Andrew Tonks: Homotopy
linear algebra. P ROY SOC EDINB A. (2018).



Function spaces and homotopy finite spaces

Theorem (Quinn)

Let M be a compact CW-complex, and R a homotopy finite space.
Then the function space, below, is homotopy finite:

TOP(M,R) = {f : M → R | f is continuous}.

In particular if M is a compact smooth manifold.

Note that TOP(M,R) is given the k-ification of the
compact-open topology on the space of maps M → R.

We will use the notation,

TOP(M,R) = RM ,

and PCx(X ) denotes the path component of x in a space X .



Quinn’s (finite total homotopy) TQFT
Let R be a HF-space. Let s ∈ C.
Functor: F (s)

R : Cob(n,n+1) → Vect.

▶ If A is an n-manifold then:

F (s)
R (A) = C

(
π0(RA)

)
= C{homotopy classes of maps A → R}.

▶ Matrix elements assigned to cobordisms, A
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Proof FR : Cob(n,n+1) → Vect is a functor
Given composable cobordisms,
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then FR(N : B → C ) ◦ FR(M : A → B) = FR(M ⊔B N : A → C ).

▶ If Σ is a submanifold of W , then restriction map, is a fibration

TOP(W ,R) → TOP(Σ,R)

f 7→ f|Σ.

▶ If p : E → X is any fibration of HF spaces then

χπ(E ) =
∑

[x]∈π0(X )

χπ(p−1(x)) χπ(PCx(X )).



Discussion: Quinn finite total homotopy TQFT

Note: Quinn TQFT FR can be twisted by classes in Hn+1(R,U(1)).

▶ Let G be a finite group. Let R be classifying space of G .
Then FR coincides with Dijkgraaf-Witten TQFT.

Explicitly calculable. Related to topological gauge theory.

Related to Kitaev quantum double model.

▶ Let G be a finite 2 group. Let R be classifying space of G.
FR coincides with (twisted) Yetter TQFT ( / Porter).

Explicitly calculable. Related to topological higher gauge theory.

Related to higher Kitaev models formulated with 2-groups.

This ‘computability’ of Quinn generalises.



Quinn finite total homotopy TQFT is ‘computable’

Theorem (Ellis)

Any connected homotopy finite space is homotopic to a space of
the form |W (G )|, where G is a finite simplicial group.

Graham Ellis: Spaces with finitely many non-trivial homotopy
groups all of which are finite. Topology (1997)

Let R = |W (G )|, and M : A → B a triangulated cobordism.
Can compute FR(M : A → B) using simplicial homotopy tools.

Quinn TQFT,
FR : Cob(n,n+1) → Vect,

thus is ‘computable’ in finite time.



The case of classifying spaces of ω-groupoids

Remainder of this talk.
We will mainly work in the case when:

R is the classifying space of a ω-groupoid / crossed complex.

E.g. R is the classifying space of a strict 2-group.

In this case the computation of FR is particularly simple.

Warning: Crossed complexes do not model all homotopy types.
For instances, spaces modelled by crossed complexes have trivial
Whitehead products.



Crossed modules of groups (as models for 2-types)

Definition (Crossed module)

A crossed module G = (∂ : E → G , ▷) is given by:

▶ A group map (i.e. a homomorphism) ∂ : E → G .

▶ A left action ▷ of G on E , by automorphisms,

such that the following conditions (Peiffer equations) hold:

Peiffer 1 ∂(g ▷ e) = g ∂(e) g−1, where g ∈ G , e ∈ E ;

Peiffer 2 ∂(e) ▷ f = e f e−1, where e, f ∈ E .

Theorem (Whitehead-MacLane)

Homotopy category of crossed modules is equivalent to homotopy
category of pointed 2-types. (Pointed space with πi = 0, if i ≥ 3.)



Crossed complexes

A crossed complex is given by a complex of groups,

C := . . .
∂−→ Cn

∂−→ Cn−1
∂−→ . . . ...

∂−→ C3
∂−→ E

∂−→ G ,

such that:

▶ we have a crossed module, (∂ : E → G , ▷), so G acts on E .

▶ all groups for Ci ,for i ≥ 3 are abelian.

▶ we have an action of G on all groups Ci , i ≥ 2

▶ all boundary maps preserve actions,

▶ the action of ∂(E ) ≤ G is trivial on all groups Ci , i ≥ 3.

Note: Both notions, crossed modules and crossed complexes,
extended to the groupoid setting.



Monoidal closed category Crs

The category Crs of crossed complexes is equivalent to the
category of strict omega-groupoids (Brown–Higgins).

Also: Crs is a monoidal closed category (Brown–Higgins).

▶ Given A and B we can form tensor product A⊗ B.
▶ Given A and B we have “function space” CRS(A,B) = BA.

▶ Natural equivalence Crs(A⊗ B, C) ∼= Crs(A, CB).

Example

Let G and H be finite groups, seen as a crossed complexes:

▶ G ⊗ H is the free product G ∗ H,
▶ CRS(G ,H) is the groupoid with:

▶ objects maps f : G → H,

▶ morphisms f
h−→ f ′ are elements of H conjugating f into f ′.



Fundamental crossed complexes of CW-complexes

Theorem (Brown-Higgins)

Let X be a CW-complex. Then the sequence of groupoids

Π(X ) := . . .
∂−→ πn(X

n,X n−1,X 0)
∂−→ πn−1(X

n−1,X n−2,X 0)

∂−→ . . . ...
∂−→ π2(X

2,X 1,X 0)
∂−→ π1(X

1,X 0)
s
⇒
t
X0.

is a totally free crossed complex, of groupoids.



Classifying spaces of crossed complexes

Definition (Nerve and classifying space of crossed complexes)

The nerve NC of the crossed complex, C, is the simplicial set NC
such that

(NC)n = homCrs

(
Π(∆(n)), C

)
.

The classifying space of C is BC := |NC|.

Theorem (Brown-Higgins)

The homotopy groups of BC are the homology groups of C.
So if C is finite then BC is a HF space.



Calculation of Quinn’s FR for R = BC.

Let C be a homotopically finite crossed complex
Hence classifying space BC is a homotopically finite space.

Theorem ( /Porter, following Brown-Higgins & Tonks)

Let A be a closed n-manifold with a triangulation. Then

FBC(A)
∼= Cπ0(CΠ(At)).

A basis of FBC(A) hence consists of morphisms f : Π(At) → C,
considered up to homotopy / pseudonatural equivalence.



Combinatorial calculation of Quinn’s FBC

Consider a cobordism, A
i ))

B
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,

and a triangulation t of M extending triangulations A and B.

Theorem ( /Porter, following Brown-Higgins & Tonks)

Given crossed complex maps f : Π(At) → C and f ′ : Π(At) → C

〈
[f ]

∣∣∣FBC (M)
∣∣∣[f ′]〉 = #

{
H : Π(Mt) → C :

Π(At) i
))

f

  

Π(Bt)j
uu

f ′

~~

Π(Mt)

H
��
C

}

commutes

×factor depending only on number of simplices of At ,Bt ,Mt ; and C.



Extended cobordisms
Let Cob(n,n+1,n+2) be the bicategory with:

▶ Objects n-dimensional closed smooth manifolds A,B, . . .

▶ 1-morphisms M : A → B are (n, n + 1)-cobordisms,

A
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B
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,

▶ 2-morphisms [K ] : (M : A → B) =⇒ (N : A → B) are
(n, n + 1, n + 2)-extended-cobordisms (up to diffeomorphism):
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Once-entended TQFTs

Definition
A once-extended TQFT is a symmetric monoidal bifunctor,

F : Cob(n,n+1,n+2) → Alg.

Here Alg is some ‘algebraic’ symmetric monoidal bicategory.



(Once)-entended TQFTs

Two target bicategories for symmetric monoidal bifunctors

F : Cob(n,n+1,n+2) → Alg.

• Alg = Mor, with:

▶ objects algebras A,B,...
▶ 1-morphisms M : A → B being (A,B)-bimodules M,

▶ Composition A M−→ B N−→ C given (A,B)-bimodule M⊗B N ,

▶ 2-morphisms (A M−→ B) =⇒ (A M′
−−→ B) are bimodule maps.

• Alg = Prof , with:

▶ objects homotopy finite groupoids G, H, ...

▶ 1-morphisms G → H are functors Gop ×H → Vect,

▶ composition is usual profunctor composition (via coends),

▶ 2-morphisms are natural transformations of functors.



Homotopical powerhouse for once-extended Quinn TQFT
Let Top/ ∼ be category of spaces and homotopy classes of maps.

Theorem (Classical)

Let p : E → X be a fibration. We have a functor

Hol : π1(X ,X ) → Top/ ∼ .

It sends:

▶ x ∈ X to Fx := p−1(x),

▶ a morphism [γ] : x → y to:

Fx

(−)×{0}
��

inc // E

p

��
Fx × [0, 1]

Lγ

44

proj2

// [0, 1] γ
// X

So Hol(γ) is homotopy class of Lγ(−, 1) : Fx → Fy .



Main theorem: once-extended TQFT

Let R be a HF space. We have a once-extended TQFT

Q̂R : Cob(n,n+1,n+2) → Prof .

▶ If A is an n manifold then Q̂R(A) = π1(RA,RA).

▶ A cobordism, M : A → B = A
i ))

B
juuM

,

gives rise to ‘path-space fibration’:

⟨i∗, j∗⟩ : RM → RA ×RB .

The profunctor, Q̂R(M : A → B) : Q̂R(A) ̸→ Q̂R(B), is:

Q̂R(A)op × Q̂R(B)
Hol−−→ Top/ ∼ π0−→ Set

Lin−−→ Vect.

▶ As per Quinn TQFT from here: non trivial it works this way.



Decorated manifolds

Let R be a homotopy finite space.

Note that in general π1(RA,RA) is uncountable:
we have one object for each function f : A → R.

Let us ‘reduce’ the size of the target groupoids.

Definition (Decorated manifold)

An R-decorated manifold, A = (A, xA), is a manifold, A, and a
finite subset xA ⊂ RA, intersecting each path-component of RA.

We have bicategory, Cob
(n,n+1,n+2)

, of R-decorated manifolds,
and (undecorated) cobordisms and extended cobordisms.



Finitary once-extended version of Quinn TQFT

Let R be a homotopy finite space, n a non-negative integer.

Theorem (Finitary once-extended Quinn TQFT)

We have bifunctor:

QR : Cob
(n,n+1,n+2) → Prof ,

sending A = (A, xA) to π1(RA, xA).

Note 1: The groupoid QR(A, xA) is finite.

Note 2: Let A be an n-manifold.
If xA and yA are different decorations of A then

QR

(
(A, xA)

A×I−−→ (A, yA)
)

gives a canonical profunctor QR(A, xA) ̸→ QR(A, yA).



Morita valued extended version of Quinn TQFT

Let R be a homotopy finite space and n ∈ Z≥0.

Theorem (Morita valued once-extended Quinn TQFT)

The symmetric monoidal bifunctor:

QR : Cob
(n,n+1,n+2) → Prof ,

sending A = (A, xA) to π1(RA, xA),

“linearises” to a bifunctor, denoted:

QMor
R : Cob

(n,n+1,n+2) → Mor,

sending A = (A, xA) to groupoid algebra C(π1(RA, xA)).



The case of crossed complexes / strict omega-groupoids

Suppose that R = BC , where C is a finite crossed complex.

Theorem
If A has a triangulation, t, then A is naturally decorated. Moreover:

QBC(At) ∼= π1
(
CΠ(At)

)
,

QMor
BC (At) ∼= C

(
π1

(
CΠ(At)

))
.

Note: π1
(
CΠ(At)

)
is groupoid of morphisms Π(At) → C, and

(2-fold homotopy classes of) homotopies between them.

Hence once-extended TQFTs, QBC & QMor
BC , can be computed.



The case of crossed complexes / strict omega-groupoids

Let {Ai}i∈I be set, containing at least one representative of each
diffeomorphism class of closed connected n-manifolds.

Choose a triangulation ti of each A(i).

Theorem (—–, Porter)

Let n ∈ Z≥0. There exist once-extended TQFTs,

QBC : Cob
(n,n+1,n+2) → Prof ,

QMor
BC : Cob(n,n+1,n+2) → Mor,

such that, for each i :

QBC(A
(i)) = π1

(
CΠ(A

(i)
ti
)
)
, QMor

BC (A(i)) = Cπ1
(
CΠ(A

(i)
ti
)
)
.

Bullivant: canonical Morita equivalences if triangulations change.



Some computations

Simplest case. Let G be a finite group.

▶ n = 0, then QBG
(·) = G , and hence QMor

BG
(.) = C(G ),

▶ n = 1, then QBG (S
1)=conjugation groupoid of G , so

QMor
BG

(S1) is the quantum double of C(G ).

New proof that there exists a (1,2,3)-extended TQFT sending
S1 to the quantum double of G .
Cf. Jeffrey Morton. Cohomological twisting of 2-linearization
and extended TQFT. J. Homotopy Relat. Struct. (2015).

▶ n = 2, then QMor
BG

(S2) = C.

▶ n = 2, then QMor
BG

(S1 × S1) is groupoid algebra of action
groupoid:

{(a, b) ∈ G × G | ab = ba}//G .



Some computations

Example

Let G = (∂ : E → G , ▷) be a finite crossed module.

n = 1: QBG (S
1) has:

▶ objects: g ∈ G .

▶ morphisms equivalence classes of arrows like:

g
[(h,e)]−−−−→ ∂(e)hgh−1, g , h ∈ G , e ∈ E .

= groupoid of G-2-connections on S1, with morphisms
(2-gauge) equivalence classes of gauge transformation.

Cf. Alex Bullivant and Clement Delcamp. Tube algebras,
excitations statistics and compactification in gauge models of
topological phases. JHEP (2019)

Alex Bullivant and Clement Delcamp. Excitations in strict 2-group
higher gauge models of topological phases. JHEP (2020).



Thanks!
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