Crossed modules, homotopy 2-types, knotted surfaces and loop braids

Algebra and Representation Theory in the North (Edinburgh)

29th November 2019

João Faria Martins (University of Leeds)

LEVERHULME TRUST

Partially funded by the Leverhulme Trust research project grant: RPG-2018-029: "Emergent Physics From Lattice Models of Higher Gauge Theory"

Let K be a (one-component) piecewise linear / smooth knot in S^3

Papakyriakopoulos theorem: S³ \ K is an aspherical space.

- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a *non-splittable* link.

Definition: (n=type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

- X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n-types\}$ be the category with objects the n-types.

Given *n*-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a *non-splittable* link.

Definition: (n=type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

- X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n-types\}$ be the category with objects the n-types.

Given *n*-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

• Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.

- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a *non-splittable* link.

Definition: (n=type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

- X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n-types\}$ be the category with objects the n-types.

Given *n*-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.

- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a *non-splittable* link.

Definition: (n=type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

- X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n-types\}$ be the category with objects the n-types.

Given *n*-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.

Definition: (n=type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

- X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n-types\}$ be the category with objects the *n*-types.

Given *n*-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally $S^3 \setminus L$ is aspherical if $L \subset S^3$ is a *non-splittable* link.

Definition: (n=type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

- X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n-types\}$ be the category with objects the n-types.

Given *n*-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.

Definition: (n=type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

- X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n-types\}$ be the category with objects the *n*-types.

Given *n*-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally $S^3 \setminus L$ is aspherical if $L \subset S^3$ is a *non-splittable* link. E.g.

Definition: (n=type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

 X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)

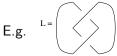
2. $\pi_i(X) = 0$, if i > n.

Let $\{n-types\}$ be the category with objects the *n*-types.

Given *n*-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.



Definition: (n=type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

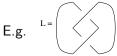
- X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n-types\}$ be the category with objects the *n*-types.

Given *n*-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.



Definition: (n=type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

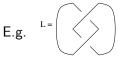
- X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let {*n*-types} be the category with objects the *n*-types.

Given *n*-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.



Definition: (n=type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

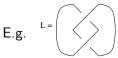
- X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let {*n*-types} be the category with objects the *n*-types.

Given *n*-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.



Definition: (n=type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

 X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
 π_i(X) = 0, if i > n.

Let {*n*-types} be the category with objects the *n*-types.

Given *n*-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.

E.g.

- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.

Definition: (n=type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

 X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
 π_i(X) = 0, if i > n.

Let {*n*-types} be the category with objects the *n*-types.

Given *n*-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.

E.g.

- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.

Definition: (n=type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

 X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)

2. $\pi_i(X) = 0$, if i > n.

Let $\{n-types\}$ be the category with objects the *n*-types.

Given *n*-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.

Definition: (n=type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

 X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)

2.
$$\pi_i(X) = 0$$
, if $i > n$.

Let {*n*-**types**} be the category with objects the *n*-types.

Given n-types X and Y,



Let K be a (one-component) piecewise linear / smooth knot in S^3

▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.

E.g. $L = \left(\begin{array}{c} \\ \\ \end{array} \right)$

- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.

Definition: (n=type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

 X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)

2.
$$\pi_i(X) = 0$$
, if $i > n$.

Let $\{n$ -types $\}$ be the category with objects the *n*-types.

Given *n*-types X and Y, morphisms $X \to Y$ are pointed homotopy classes of pointed maps.

Let K be a (one-component) piecewise linear / smooth knot in S^3

▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.

E.g. L=

- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.

Definition: (n=type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

 X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)

2.
$$\pi_i(X) = 0$$
, if $i > n$.

Let $\{n$ -types $\}$ be the category with objects the *n*-types.

Given n-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.

Definition: (n=type) Let $n \in \mathbb{Z}_0^+$.

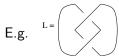
An *n*-type is a path-connected pointed space X = (X, *) such that:

 X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)

2.
$$\pi_i(X) = 0$$
, if $i > n$.

Let $\{n$ -types $\}$ be the category with objects the *n*-types.

Given n-types X and Y,



Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1 \colon \{1 ext{-types}\} o \{ ext{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_*: \pi_1(X) \to \pi_1(Y)$ are equal.

In particular it follows that:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

$\pi_1: \ \{1 ext{-types}\} o \{ ext{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_*: \pi_1(X) \to \pi_1(Y)$ are equal.

In particular it follows that:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1: \{1 ext{-types}\} o \{ ext{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_*: \pi_1(X) \to \pi_1(Y)$ are equal.

In particular it follows that:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1: \{1 ext{-types}\} o \{ ext{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' : X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* : \pi_1(X) \to \pi_1(Y)$ are equal.

In particular it follows that:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1: \{1\text{-types}\} \rightarrow \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' : X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* : \pi_1(X) \to \pi_1(Y)$ are equal.

In particular it follows that:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1: \{1\text{-types}\} \rightarrow \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' : X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* : \pi_1(X) \to \pi_1(Y)$ are equal.

In particular it follows that:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1 : \ \{1\text{-types}\} \to \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X)\cong\pi_1(Y).$
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular it follows that:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1 : \ \{1\text{-types}\} \to \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' : X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* : \pi_1(X) \to \pi_1(Y)$ are equal.

In particular it follows that:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1 : \ \{1\text{-types}\} \to \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- Maps f, f': X → Y, of 1-types, are pointed homotopic iff induced maps f_{*}, f'_{*}: π₁(X) → π₁(Y) are equal.

In particular it follows that:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1 : \ \{1\text{-types}\} \to \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic

iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular it follows that:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1 : \ \{1\text{-types}\} \to \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic

iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular it follows that:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$.

A generator for each arc of projection. A relation for each crossing:

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1: \{1\text{-types}\} \rightarrow \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic

iff induced maps $f_*, f'_*: \pi_1(X) \to \pi_1(Y)$ are equal.

In particular it follows that:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$.

A generator for each arc of projection. A relation for each crossing:

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1 : \ \{1\text{-types}\} \to \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_*: \pi_1(X) \to \pi_1(Y)$ are equal.

In particular it follows that:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1: \{1\text{-types}\} \rightarrow \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular it follows that:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1 : \ \{1\text{-types}\} \to \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular it follows that:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1 : \ \{1\text{-types}\} \to \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular it follows that:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1: \{1\text{-types}\} \rightarrow \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular it follows that:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1 : \ \{1\text{-types}\} \to \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular it follows that:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$.

A generator for each arc of projection. A relation for each crossing:

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1 : \ \{1\text{-types}\} \to \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular it follows that:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

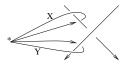
 $\pi_1 : \ \{1\text{-types}\} \to \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular it follows that:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.



Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

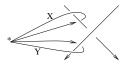
 $\pi_1: \{1\text{-types}\} \rightarrow \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular it follows that:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.



Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

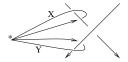
 $\pi_1 : \ \{1\text{-types}\} \to \{\text{groups}\}$

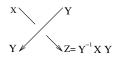
is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular it follows that:

Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.





Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^4$

- Let $\Sigma \subset S^4$ be a closed surface smoothly embedded in S^4 . (Any genus, any number of components, possibly non-orientable.) Fact: $S^4 \setminus \Sigma$ need not be aspherical. (Likely it never is.) Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.
- We need to look at 'higher order' homotopy type information in order to classify $S^4 \setminus \Sigma$ up to homotopy.
- Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.
- This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.
- I.e. we throw away homotopy theoretical information of order \geq 3. Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups. ... To be explained later.

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^4$ Let $\Sigma \subset S^4$ be a closed surface smoothly embedded in S^4 .

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^4$ Let $\Sigma \subset S^4$ be a closed surface smoothly embedded in S^4 . (Any genus, any number of components, possibly non-orientable.)

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^4$ Let $\Sigma \subset S^4$ be a closed surface smoothly embedded in S^4 . (Any genus, any number of components, possibly non-orientable.) Fact: $S^4 \setminus \Sigma$ need not be aspherical. (Likely it never is.)

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^4$ Let $\Sigma \subset S^4$ be a closed surface smoothly embedded in S^4 . (Any genus, any number of components, possibly non-orientable.) Fact: $S^4 \setminus \Sigma$ need not be aspherical. (Likely it never is.)

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^4$ Let $\Sigma \subset S^4$ be a closed surface smoothly embedded in S^4 . (Any genus, any number of components, possibly non-orientable.) Fact: $S^4 \setminus \Sigma$ need not be aspherical. (Likely it never is.) Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

... To be explained later.

Let us look at *the homotopy 2-type* $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3. Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups. ... To be explained later.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order ≥ 3 . Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups. ... To be explained later.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3. Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups. ... To be explained later.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma.$

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3. Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

... To be explained later.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma.$

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3. Hence $\mathcal{P}_2(S^4\setminus\Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups. ... To be explained later. We will see 2-groups as being represented by crossed modules.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma.$

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3. Hence $\mathcal{P}_2(S^4\setminus\Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups. ... To be explained later. We will see 2-groups as being represented by crossed modules.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma.$

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3. Hence $\mathcal{P}_2(S^4\setminus\Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

... To be explained later.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma.$

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3. Hence $\mathcal{P}_2(S^4\setminus\Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

... To be explained later.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma.$

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3. Hence $\mathcal{P}_2(S^4\setminus\Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

... To be explained later.

Crossed modules

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- ▶ A group map (i.e. homomorphism) ∂: E → G. (G is called the "base-group". E is the "principal group".)
- A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Example

G a group; A an <u>abelian group</u>.
 Consider a left-action ▷ of G on A, by automorphisms.
 We have a crossed module G = (A → 1G G, ▷).

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. homomorphism) ∂: E → G. (G is called the "base-group". E is the "principal group".)
- ▶ A left action ▷ of G on E, by automorphisms,
- such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Example

G a group; A an <u>abelian group</u>.
 Consider a left-action ▷ of G on A, by automorphisms.
 We have a crossed module G = (A → 1c G, ▷).

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. homomorphism) ∂: E → G. (G is called the "base-group". E is the "principal group".)
- A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Example

► G a group; A an <u>abelian group</u>. Consider a left-action ▷ of G on A, by automorphisms. We have a crossed module G = (A → 1G G, ▷).

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. homomorphism) ∂: E → G. (G is called the "base-group". E is the "principal group".)
- A left action ▷ of G on E, by automorphisms,
- such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Example

► G a group; A an <u>abelian group</u>. Consider a left-action ▷ of G on A, by automorphisms. We have a crossed module G = (A → 1G G, ▷).

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. homomorphism) ∂: E → G. (G is called the "base-group". E is the "principal group".)
- A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Example

► G a group; A an <u>abelian group</u>. Consider a left-action ▷ of G on A, by automorphisms. We have a crossed module G = (A → 1G G, ▷).

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

► A group map (i.e. homomorphism) $\partial : E \to G$.

(G is called the "base-group". E is the "principal group".

A left action ▷ of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Example

G a group; A an <u>abelian group</u>.
 Consider a left-action ▷ of G on A, by automorphisms.
 We have a crossed module G = (A → 1G G, ▷).

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. homomorphism) ∂: E → G. (G is called the "base-group". E is the "principal group".

A left action ▷ of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Example

G a group; A an <u>abelian group</u>. Consider a left-action ▷ of G on A, by automorphisms. We have a crossed module G = (A → 1G G, ▷).

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

A left action \triangleright of G on E, by automorphisms,

▶ such that the following conditions (*Peiffer equations*) hold: 1. $\partial(g \triangleright e) = g\partial(e)g^{-1}$, where $g \in G, e \in E$;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Example

► G a group; A an <u>abelian group</u>. Consider a left-action ▷ of G on A, by automorphisms. We have a crossed module G = (A → 1_G/G, ▷).

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

A left action \triangleright of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold: 1. ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Example

G a group; A an <u>abelian group</u>. Consider a left-action ▷ of G on A, by automorphisms. We have a crossed module G = (A → 1G G, ▷).

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

• A left action \triangleright of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Example

G a group; A an <u>abelian group</u>. Consider a left-action ▷ of G on A, by automorphisms. We have a crossed module G = (A → 1G → 1G, ▷).

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

▶ A left action \triangleright of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold:

1. $\partial(g \triangleright e) = g\partial(e)g^{-1}$, where $g \in G, e \in E$;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Example

G a group; A an <u>abelian group</u>. Consider a left-action ▷ of G on A, by automorphisms. We have a crossed module G = (A ^{a∈A → 1G}/_G, ▷).

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

• A left action \triangleright of G on E, by automorphisms,

- such that the following conditions (*Peiffer equations*) hold:
 - 1. $\partial(g \triangleright e) = g \partial(e)g^{-1}$, where $g \in G, e \in E$;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Example

G a group; A an <u>abelian group</u>. Consider a left-action ▷ of G on A, by automorphisms. We have a crossed module G = (A = (A = → 1G)/G, ▷).

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

▶ A left action \triangleright of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold:

1.
$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Example

G a group; A an <u>abelian group</u>. Consider a left-action ▷ of G on A, by automorphisms. We have a crossed module G = (A → 1_G/G, ▷).

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

▶ A left action \triangleright of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold:

1.
$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

G a group; A an <u>abelian group</u>. Consider a left-action ▷ of G on A, by automorphisms. We have a crossed module G = (A ^{a∈A → 1}G, ▷).

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (*Peiffer equations*) hold:

1.
$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

G a group; A an abelian group. Consider a left-action ▷ of G on A, by automorphisms. We have a crossed module G = (A = (A = → 1G)/G, ▷).

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (*Peiffer equations*) hold:

1.
$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

G a group; A an abelian group.
 Consider a left-action ▷ of G on A, by automorphisms.
 We have a crossed module G = (A → 1G G, ▷).

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (*Peiffer equations*) hold:

1.
$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

G a group; A an abelian group. Consider a left-action ▷ of G on A, by automorphisms. We have a crossed module G = (A a∈A → 1G) G, ▷).

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (*Peiffer equations*) hold:

1.
$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

► *G* a group; *A* an <u>abelian group</u>.

Consider a left-action \triangleright of G on A, by automorphisms.

∂: A → G a map of <u>abelian groups</u>. Trivial action g • a = a. Then G = (∂: A → G, •) is a crossed module.

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (*Peiffer equations*) hold:

1.
$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

G a group; A an <u>abelian group</u>.
 Consider a left-action ▷ of G on A, by automorphisms.
 We have a crossed module G = (A → 1c, G, ▷).

∂: A → G a map of <u>abelian groups</u>. Trivial action g • a = a. Then G = (∂: A → G, •) is a crossed module.

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (*Peiffer equations*) hold:

1.
$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

G a group; A an <u>abelian group</u>.
 Consider a left-action ▷ of G on A, by automorphisms.
 We have a crossed module G = (A → 1G, G, ▷).

∂: A → G a map of <u>abelian groups</u>. Trivial action g • a = a. Then G = (∂: A → G, •) is a crossed module.

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (*Peiffer equations*) hold:

1.
$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

 G a group; A an abelian group. Consider a left-action ▷ of G on A, by automorphisms. We have a crossed module G = (A → 1_G/G, ▷).

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (*Peiffer equations*) hold:

1.
$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

 G a group; A an abelian group. Consider a left-action ▷ of G on A, by automorphisms. We have a crossed module G = (A → 1_G/G, ▷).

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (*Peiffer equations*) hold:

1.
$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

• *G* a group; *A* an abelian group. Consider a left-action \triangleright of *G* on *A*, by automorphisms. We have a crossed module $\mathcal{G} = (A \xrightarrow{a \in A \mapsto 1_G} G, \triangleright).$

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (*Peiffer equations*) hold:

1.
$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

• *G* a group; *A* an abelian group. Consider a left-action \triangleright of *G* on *A*, by automorphisms. We have a crossed module $\mathcal{G} = (A \xrightarrow{a \in A \mapsto 1_G} G, \triangleright).$

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)
- ▶ A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (*Peiffer equations*) hold:

1.
$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

► *G* a group; *A* an <u>abelian group</u>. Consider a left-action \triangleright of *G* on *A*, by automorphisms. We have a crossed module $\mathcal{G} = (A \xrightarrow{a \in A \mapsto 1_{\mathcal{G}}} G, \triangleright).$

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

 $\partial(g \triangleright e) = g \partial(e) g^{-1}, \text{ where } g \in G, e \in E;$ $\partial(e) \triangleright f = efe^{-1}, \text{ where } e, f \in E.$

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

► Let (M, N, *) be a pair of spaces. We have a crossed module: $\Pi_2(M, N, *) = (\partial : \pi_2(M, N, *) \rightarrow \pi_1(N, *), \triangleright).$

Let V be a set, G a group. Consider a map ∂₀: V → G. We can define the "free crossed module on ∂₀", denoted U(∂₀: V → G) = (∂: F(V → G) → G,▷).

More examples of crossed modules $\mathcal{G} = (\partial : E \to G, \triangleright)$ A group map $\partial : E \to G$. A left action \triangleright of G on E. With

 $\partial(g \triangleright e) = g\partial(e)g^{-1}$, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

▶ Let (M, N, *) be a pair of spaces. We have a crossed module: $\Pi_2(M, N, *) = (\partial : \pi_2(M, N, *) \rightarrow \pi_1(N, *), \triangleright).$

Let V be a set, G a group. Consider a map ∂₀: V → G. We can define the "free crossed module on ∂₀", denoted U(∂₀: V → G) = (∂: F(V → G) → G,▷).

More examples of crossed modules $\mathcal{G} = (\partial : E \to G, \triangleright)$ A group map $\partial : E \to G$. A left action \triangleright of G on E. With $\partial(g \triangleright e) = g\partial(e)g^{-1}$, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

► Let (M, N, *) be a pair of spaces. We have a crossed module: $\Pi_2(M, N, *) = (\partial : \pi_2(M, N, *) \rightarrow \pi_1(N, *), \triangleright).$

Let V be a set, G a group. Consider a map ∂₀: V → G. We can define the "free crossed module on ∂₀", denoted U(∂₀: V → G) = (∂: F(V → G) → G,▷).

More examples of crossed modules $\mathcal{G} = (\partial : E \to G, \triangleright)$ A group map $\partial : E \to G$. A left action \triangleright of G on E. With $\partial(g \triangleright e) = g\partial(e)g^{-1}$, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

► Let (M, N, *) be a pair of spaces. We have a crossed module: $\Pi_2(M, N, *) = (\partial : \pi_2(M, N, *) \rightarrow \pi_1(N, *), \triangleright).$

Let V be a set, G a group. Consider a map ∂₀: V → G. We can define the "free crossed module on ∂₀", denoted U(∂₀: V → G) = (∂: F(V → G) → G,▷).

More examples of crossed modules $\mathcal{G} = (\partial : E \to G, \triangleright)$ A group map $\partial : E \to G$. A left action \triangleright of G on E. With $\partial(g \triangleright e) = g\partial(e)g^{-1}$, where $g \in G, e \in E$;

 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

▶ Let (M, N, *) be a pair of spaces. We have a crossed module: $\Pi_2(M, N, *) = (\partial : \pi_2(M, N, *) \rightarrow \pi_1(N, *), \triangleright).$

Let V be a set, G a group. Consider a map ∂₀: V → G. We can define the "free crossed module on ∂₀", denoted U(∂₀: V → G) = (∂: F(V → G) → G,▷).

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

► Let (M, N, *) be a pair of spaces. We have a crossed module: $\Pi_2(M, N, *) = (\partial : \pi_2(M, N, *) \rightarrow \pi_1(N, *), \triangleright).$

Let V be a set, G a group. Consider a map ∂₀: V → G.
 We can define the "free crossed module on ∂₀", denoted
 U(∂₀: V → G) = (∂: F(V → G) → G, ▷).

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

▶ Let *H* be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$. (Ad: $H \to \operatorname{Aut}(H)$, ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

Let V be a set, G a group. Consider a map ∂₀: V → G.
 We can define the "free crossed module on ∂₀", denoted
 U(∂₀: V → G) = (∂: F(V → G) → G, ▷).

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

▶ Let *H* be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$. (Ad: $H \to \operatorname{Aut}(H)$, ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

Let V be a set, G a group. Consider a map ∂₀: V → G. We can define the "free crossed module on ∂₀", denoted U(∂₀: V → G) = (∂: F(V → G) → G,▷).

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

▶ Let V be a set, G a group. Consider a map $\partial_0 : V \to G$. We can define the "free crossed module on ∂_0 ", denoted $\mathcal{U}(\partial_0 : V \to G) = (\partial : \mathcal{F}(V \xrightarrow{\partial_0} G) \longrightarrow G, \triangleright).$

A group map $\partial \colon E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.
- Let (M, N, *) be a pair of spaces. We have a crossed module: $\Pi_2(M, N, *) = (\partial : \pi_2(M, N, *) \rightarrow \pi_1(N, *), >).$

▶ Let V be a set, G a group. Consider a map $\partial_0 : V \to G$. We can define the "free crossed module on ∂_0 ", denoted $\mathcal{U}(\partial_0 : V \to G) = (\partial : \mathcal{F}(V \xrightarrow{\partial_0} G) \longrightarrow G, \triangleright).$

A group map $\partial \colon E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

▶ Let V be a set, G a group. Consider a map $\partial_0 : V \to G$. We can define the "free crossed module on ∂_0 ", denoted $\mathcal{U}(\partial_0 : V \to G) = (\partial : \mathcal{F}(V \xrightarrow{\partial_0} G) \longrightarrow G, \triangleright).$

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

▶ Let V be a set, G a group. Consider a map ∂_0 : V → G. We can define the "free crossed module on ∂_0 ", denoted $\mathcal{U}\langle\partial_0: V \to G\rangle = (\partial: \mathcal{F}(V \xrightarrow{\partial_0} G) \longrightarrow G, \triangleright).$

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

▶ Let V be a set, G a group. Consider a map ∂_0 : V → G. We can define the "free crossed module on ∂_0 ", denoted $\mathcal{U}\langle\partial_0: V \to G\rangle = (\partial: \mathcal{F}(V \xrightarrow{\partial_0} G) \longrightarrow G, \triangleright).$

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

▶ Let V be a set, G a group. Consider a map $\partial_0 : V \to G$. We can define the "free crossed module on ∂_0 ", denoted $\mathcal{U}(\partial_0 : V \to G) = (\partial : \mathcal{F}(V \xrightarrow{\partial_0} G) \longrightarrow G, \triangleright).$

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

Let V be a set, G a group. Consider a map ∂₀: V → G. We can define the "free crossed module on ∂₀", denoted U(∂₀: V → G) = (∂: F(V → G) → G,▷).

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}, \text{ where } g \in G, e \in E;$$

 $\partial(e) \triangleright f = efe^{-1}, \text{ where } e, f \in E.$

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

▶ Let *V* be a set, *G* a group. Consider a map $\partial_0 : V \to G$. We can define the "free crossed module on ∂_0 ", denoted $\mathcal{U}(\partial_0 : V \to G) = (\partial : \mathcal{F}(V \xrightarrow{\partial_0} G) \longrightarrow G, \triangleright).$

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

Let V be a set, G a group. Consider a map ∂₀: V → G.
 We can define the "free crossed module on ∂₀", denoted
 U(∂₀: V → G) = (∂: F(V → G) → G, ▷)

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

Let V be a set, G a group. Consider a map ∂₀: V → G. We can define the "free crossed module on ∂₀", denoted U(∂₀ ∨ → G) = (∂₁ F (V → G) → G.)

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

Let V be a set, G a group. Consider a map ∂₀: V → G. We can define the "free crossed module on ∂₀", denoted U(∂₀: V → G) = (∂₀ J (V)² G) → G = (∂₀)

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}, \text{ where } g \in G, e \in E;$$

 $\partial(e) \triangleright f = efe^{-1}, \text{ where } e, f \in E.$

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

Let V be a set, G a group. Consider a map ∂₀: V → G.
 We can define the "free crossed module on ∂₀", denoted
 U(∂₀: V → G) = (∂: U(V)) = (0)

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

Let V be a set, G a group. Consider a map ∂₀: V → G.
 We can define the "free crossed module on ∂₀", denoted
 U(∂₀: V → G) = (∂: F(V → G) → G)

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

Let V be a set, G a group. Consider a map ∂₀: V → G.
 We can define the "free crossed module on ∂₀", denoted
 U(∂₀: V → G) = (∂: F(V → G) → G)

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

Let V be a set, G a group. Consider a map ∂₀: V → G.
 We can define the "free crossed module on ∂₀", denoted
 U(∂₀: V → G) = (∂: F(V → G) → G, ▷)

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

Let V be a set, G a group. Consider a map ∂₀: V → G.
 We can define the "free crossed module on ∂₀", denoted
 U(∂₀: V → G) = (∂: F(V → G) → G, ▷).

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

Let V be a set, G a group. Consider a map ∂₀: V → G.
 We can define the "free crossed module on ∂₀", denoted
 U(∂₀: V → G) = (∂: F(V → G) → G, ▷).

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

Let V be a set, G a group. Consider a map ∂₀: V → G.
 We can define the "free crossed module on ∂₀", denoted
 U(∂₀: V → G) = (∂: F(V → G) → G, ▷).

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

Let V be a set, G a group. Consider a map ∂₀: V → G.
 We can define the "free crossed module on ∂₀", denoted
 U(∂₀: V → G) = (∂: F(V → G) → G, ▷).

More examples of crossed modules $\mathcal{G} = (\partial \colon E \to G, \triangleright)$

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

Let V be a set, G a group. Consider a map ∂₀: V → G.
 We can define the "free crossed module on ∂₀", denoted
 U(∂₀: V → G) = (∂: F(V → G) → G, ▷).

Whitehead theorem: If Y is obtained from X by attaching 2-cells, then $\Pi_2(Y, X)$ is free on their attaching maps $\{2 - cells\} \rightarrow \pi_1(X)$.

More examples of crossed modules $\mathcal{G} = (\partial \colon E \to G, \triangleright)$

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}, \text{ where } g \in G, e \in E;$$

 $\partial(e) \triangleright f = efe^{-1}, \text{ where } e, f \in E.$

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

Let V be a set, G a group. Consider a map ∂₀: V → G.
 We can define the "free crossed module on ∂₀", denoted
 U(∂₀: V → G) = (∂: F(V → G) → G, ▷).

Whitehead theorem: If Y is obtained from X by attaching 2-cells, then $\Pi_2(Y, X)$ is free on their attaching maps $\{2 - cells\} \rightarrow \pi_1(X)$.

More examples of crossed modules $\mathcal{G} = (\partial \colon E \to G, \triangleright)$

A group map $\partial : E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}, \text{ where } g \in G, e \in E;$$

 $\partial(e) \triangleright f = efe^{-1}, \text{ where } e, f \in E.$

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

Let V be a set, G a group. Consider a map ∂₀: V → G.
 We can define the "free crossed module on ∂₀", denoted
 U(∂₀: V → G) = (∂: F(V → G) → G, ▷).

Whitehead theorem: If Y is obtained from X by attaching 2-cells, then $\Pi_2(Y, X)$ is free on their attaching maps $\{2 - cells\} \rightarrow \pi_1(X)$.

- 1. Crossed modules and their maps form a category.
- 2. Each crossed module embeds into an exact sequence like:

 $\pi_2(\mathcal{G}) \doteq \ker(\partial) \xrightarrow{i} E \xrightarrow{\partial} G \xrightarrow{p} \pi_1(\mathcal{G}) \doteq \operatorname{coker}(\partial).$

- 3. Yield cohomology class $\omega \in H^3(\pi_1(\mathcal{G}),\pi_2(\mathcal{G})),$ the k-invariant.
- An algebraic 2-type is a triple (A, K, ω), where A is an abelian group with a left action of K, and ω ∈ H³(K, A).

We have a fundamental algebraic 2-type functor:

{Pointed topological spaces} \rightarrow {Algebraic 2-types} sending a space X to the triple $(\pi_2(X), \pi_1(X), k(X))$, called the algebraic 2-type of X.

We also have a functor:

 $\rho_2: \{ \{ Crossed Modules \} \rightarrow \{ Algebraic 2-types \} \\ \mathcal{G} \mapsto (\pi_2(\mathcal{G}), \pi_1(\mathcal{G}), k(\mathcal{G})).$

1. Crossed modules and their maps form a category.

2. Each crossed module embeds into an exact sequence like:

$$\pi_2(\mathcal{G}) \doteq \ker(\partial) \xrightarrow{i} \boxed{E \xrightarrow{\partial} G} \xrightarrow{p} \pi_1(\mathcal{G}) \doteq \operatorname{coker}(\partial).$$

- 3. Yield cohomology class $\omega \in H^3(\pi_1(\mathcal{G}), \pi_2(\mathcal{G}))$, the k-invariant.
- An algebraic 2-type is a triple (A, K, ω), where A is an abelian group with a left action of K, and ω ∈ H³(K, A).

We have a fundamental algebraic 2-type functor:

{Pointed topological spaces} \rightarrow {Algebraic 2-types} sending a space X to the triple $(\pi_2(X), \pi_1(X), k(X))$, called the algebraic 2-type of X.

We also have a functor:

 $\rho_2: \{ \{ Crossed Modules \} \rightarrow \{ Algebraic 2-types \} \\ \mathcal{G} \mapsto (\pi_2(\mathcal{G}), \pi_1(\mathcal{G}), k(\mathcal{G})).$

- 1. Crossed modules and their maps form a category.
- 2. Each crossed module embeds into an exact sequence like:

 $\pi_2(\mathcal{G}) \doteq \ker(\partial) \xrightarrow{i} \boxed{E \xrightarrow{\partial} G} \xrightarrow{p} \pi_1(\mathcal{G}) \doteq \operatorname{coker}(\partial).$

- 3. Yield cohomology class $\omega \in H^3(\pi_1(\mathcal{G}), \pi_2(\mathcal{G}))$, the k-invariant.
- An algebraic 2-type is a triple (A, K, ω), where A is an abelian group with a left action of K, and ω ∈ H³(K, A).

We have a fundamental algebraic 2-type functor:

{Pointed topological spaces} \rightarrow {Algebraic 2-types} sending a space X to the triple $(\pi_2(X), \pi_1(X), k(X))$, called the algebraic 2-type of X.

We also have a functor:

 $\rho_2: \{ \{ Crossed Modules \} \rightarrow \{ Algebraic 2-types \} \\ \mathcal{G} \mapsto (\pi_2(\mathcal{G}), \pi_1(\mathcal{G}), k(\mathcal{G})).$

- 1. Crossed modules and their maps form a category.
- 2. Each crossed module embeds into an exact sequence like:

$$\pi_2(\mathcal{G}) \doteq \ker(\partial) \xrightarrow{i} \boxed{E \xrightarrow{\partial} G} \xrightarrow{p} \pi_1(\mathcal{G}) \doteq \operatorname{coker}(\partial).$$

- 3. Yield cohomology class $\omega \in H^3(\pi_1(\mathcal{G}), \pi_2(\mathcal{G}))$, the k-invariant.
- 4. An algebraic 2-type is a triple (A, K, ω) , where A is an abelian group with a left action of K, and $\omega \in H^3(K, A)$.

We have a fundamental algebraic 2-type functor:

{Pointed topological spaces} \rightarrow {Algebraic 2-types} sending a space X to the triple $(\pi_2(X), \pi_1(X), k(X))$, called the algebraic 2-type of X.

We also have a functor:

 $\rho_2: \{ \text{Crossed Modules} \} \rightarrow \{ \text{Algebraic 2-types} \} \\ \mathcal{G} \mapsto (\pi_2(\mathcal{G}), \pi_1(\mathcal{G}), k(\mathcal{G})).$

- 1. Crossed modules and their maps form a category.
- 2. Each crossed module embeds into an exact sequence like:

$$\pi_2(\mathcal{G}) \doteq \ker(\partial) \xrightarrow{i} \boxed{E \xrightarrow{\partial} G} \xrightarrow{p} \pi_1(\mathcal{G}) \doteq \operatorname{coker}(\partial).$$

- 3. Yield cohomology class $\omega \in H^3(\pi_1(\mathcal{G}), \pi_2(\mathcal{G}))$, the k-invariant.
- An algebraic 2-type is a triple (A, K, ω), where A is an abelian group with a left action of K, and ω ∈ H³(K, A).

We have a fundamental algebraic 2-type functor:

{Pointed topological spaces} \rightarrow {Algebraic 2-types} sending a space X to the triple $(\pi_2(X), \pi_1(X), k(X))$, called the algebraic 2-type of X.

We also have a functor:

 $\rho_2: \{ \text{Crossed Modules} \} \rightarrow \{ \text{Algebraic 2-types} \} \\ \mathcal{G} \mapsto (\pi_2(\mathcal{G}), \pi_1(\mathcal{G}), k(\mathcal{G})).$

- 1. Crossed modules and their maps form a category.
- 2. Each crossed module embeds into an exact sequence like:

$$\pi_2(\mathcal{G}) \doteq \ker(\partial) \xrightarrow{i} \boxed{E \xrightarrow{\partial} G} \xrightarrow{p} \pi_1(\mathcal{G}) \doteq \operatorname{coker}(\partial).$$

- 3. Yield cohomology class $\omega \in H^3(\pi_1(\mathcal{G}), \pi_2(\mathcal{G}))$, the *k*-invariant.
- 4. An algebraic 2-type is a triple (A, K, ω) , where A is an abelian group with a left action of K, and $\omega \in H^3(K, A)$.

We have a fundamental algebraic 2-type functor:

{Pointed topological spaces} \rightarrow {Algebraic 2-types} sending a space X to the triple $(\pi_2(X), \pi_1(X), k(X))$, called the algebraic 2-type of X.

We also have a functor:

 $\rho_2: \{ \{ Crossed Modules \} \rightarrow \{ Algebraic 2-types \} \\ \mathcal{G} \mapsto (\pi_2(\mathcal{G}), \pi_1(\mathcal{G}), k(\mathcal{G})).$

- 1. Crossed modules and their maps form a category.
- 2. Each crossed module embeds into an exact sequence like:

$$\pi_2(\mathcal{G}) \doteq \ker(\partial) \xrightarrow{i} \boxed{E \xrightarrow{\partial} G} \xrightarrow{p} \pi_1(\mathcal{G}) \doteq \operatorname{coker}(\partial).$$

- 3. Yield cohomology class $\omega \in H^3(\pi_1(\mathcal{G}), \pi_2(\mathcal{G}))$, the *k*-invariant.
- 4. An algebraic 2-type is a triple (A, K, ω) , where A is an abelian group with a left action of K, and $\omega \in H^3(K, A)$.

We have a fundamental algebraic 2-type functor:

{**Pointed topological spaces**} \rightarrow {Algebraic 2-types} sending a space X to the triple $(\pi_2(X), \pi_1(X), k(X))$, called the algebraic 2-type of X.

We also have a functor:

 $\rho_2: \{ \{ Crossed Modules \} \rightarrow \{ Algebraic 2-types \} \\ \mathcal{G} \mapsto (\pi_2(\mathcal{G}), \pi_1(\mathcal{G}), k(\mathcal{G})) \}$

- 1. Crossed modules and their maps form a category.
- 2. Each crossed module embeds into an exact sequence like:

$$\pi_2(\mathcal{G}) \doteq \ker(\partial) \xrightarrow{i} \boxed{E \xrightarrow{\partial} \mathcal{G}} \xrightarrow{p} \pi_1(\mathcal{G}) \doteq \operatorname{coker}(\partial).$$

- 3. Yield cohomology class $\omega \in H^3(\pi_1(\mathcal{G}), \pi_2(\mathcal{G}))$, the *k*-invariant.
- 4. An algebraic 2-type is a triple (A, K, ω) , where A is an abelian group with a left action of K, and $\omega \in H^3(K, A)$.

We have a fundamental algebraic 2-type functor:

{Pointed topological spaces} \rightarrow {Algebraic 2-types} sending a space X to the triple $(\pi_2(X), \pi_1(X), k(X))$, called the algebraic 2-type of X.

We also have a functor:

 $\rho_2: \{ \textbf{Crossed Modules} \} \to \{ \text{Algebraic 2-types} \} \\ \mathcal{G} \mapsto (\pi_2(\mathcal{G}), \pi_1(\mathcal{G}), k(\mathcal{G})).$

- 1. Crossed modules and their maps form a category.
- 2. Each crossed module embeds into an exact sequence like:

$$\pi_2(\mathcal{G}) \doteq \ker(\partial) \xrightarrow{i} \boxed{E \xrightarrow{\partial} G} \xrightarrow{p} \pi_1(\mathcal{G}) \doteq \operatorname{coker}(\partial).$$

- 3. Yield cohomology class $\omega \in H^3(\pi_1(\mathcal{G}), \pi_2(\mathcal{G}))$, the *k*-invariant.
- 4. An algebraic 2-type is a triple (A, K, ω) , where A is an abelian group with a left action of K, and $\omega \in H^3(K, A)$.

We have a fundamental algebraic 2-type functor:

{Pointed topological spaces} \rightarrow {Algebraic 2-types} sending a space X to the triple $(\pi_2(X), \pi_1(X), k(X))$, called the algebraic 2-type of X.

We also have a functor:

```
\rho_2: \{ \{ Crossed Modules \} \rightarrow \{ Algebraic 2-types \} \\ \mathcal{G} \mapsto (\pi_2(\mathcal{G}), \pi_1(\mathcal{G}), k(\mathcal{G}))
```

- 1. Crossed modules and their maps form a category.
- 2. Each crossed module embeds into an exact sequence like:

$$\pi_2(\mathcal{G}) \doteq \ker(\partial) \xrightarrow{i} \boxed{E \xrightarrow{\partial} \mathcal{G}} \xrightarrow{p} \pi_1(\mathcal{G}) \doteq \operatorname{coker}(\partial).$$

- 3. Yield cohomology class $\omega \in H^3(\pi_1(\mathcal{G}), \pi_2(\mathcal{G}))$, the *k*-invariant.
- 4. An algebraic 2-type is a triple (A, K, ω) , where A is an abelian group with a left action of K, and $\omega \in H^3(K, A)$.

We have a fundamental algebraic 2-type functor:

{Pointed topological spaces} \rightarrow {Algebraic 2-types} sending a space X to the triple $(\pi_2(X), \pi_1(X), k(X))$, called the algebraic 2-type of X.

We also have a functor: $\rho_2: \{ \text{Crossed Modules} \} \rightarrow \{ \text{Algebraic 2-types} \} \\
\mathcal{G} \mapsto (\pi_2(\mathcal{G}), \pi_1(\mathcal{G}), k(\mathcal{G}))$

- 1. Crossed modules and their maps form a category.
- 2. Each crossed module embeds into an exact sequence like:

$$\pi_2(\mathcal{G}) \doteq \ker(\partial) \xrightarrow{i} \boxed{E \xrightarrow{\partial} \mathcal{G}} \xrightarrow{p} \pi_1(\mathcal{G}) \doteq \operatorname{coker}(\partial).$$

- 3. Yield cohomology class $\omega \in H^3(\pi_1(\mathcal{G}), \pi_2(\mathcal{G}))$, the *k*-invariant.
- 4. An algebraic 2-type is a triple (A, K, ω) , where A is an abelian group with a left action of K, and $\omega \in H^3(K, A)$.

We have a fundamental algebraic 2-type functor:

{Pointed topological spaces} \rightarrow {Algebraic 2-types} sending a space X to the triple $(\pi_2(X), \pi_1(X), k(X))$, called the algebraic 2-type of X.

We also have a functor:

$$\rho_{2}: \{ \text{Crossed Modules} \} \rightarrow \{ \text{Algebraic 2-types} \} \\ \mathcal{G} \mapsto (\pi_{2}(\mathcal{G}), \pi_{1}(\mathcal{G}), k(\mathcal{G}))$$

- 1. Crossed modules and their maps form a category.
- 2. Each crossed module embeds into an exact sequence like:

$$\pi_2(\mathcal{G}) \doteq \ker(\partial) \xrightarrow{i} \boxed{E \xrightarrow{\partial} \mathcal{G}} \xrightarrow{p} \pi_1(\mathcal{G}) \doteq \operatorname{coker}(\partial).$$

- 3. Yield cohomology class $\omega \in H^3(\pi_1(\mathcal{G}), \pi_2(\mathcal{G}))$, the *k*-invariant.
- 4. An algebraic 2-type is a triple (A, K, ω) , where A is an abelian group with a left action of K, and $\omega \in H^3(K, A)$.

We have a fundamental algebraic 2-type functor:

{Pointed topological spaces} \rightarrow {Algebraic 2-types} sending a space X to the triple $(\pi_2(X), \pi_1(X), k(X))$, called the algebraic 2-type of X.

We also have a functor:

$\rho_{2}: \{ \text{Crossed Modules} \} \rightarrow \{ \text{Algebraic 2-types} \}$ $\mathcal{G} \mapsto (\pi_{2}(\mathcal{G}), \pi_{1}(\mathcal{G}), k(\mathcal{G}))$

- 1. Crossed modules and their maps form a category.
- 2. Each crossed module embeds into an exact sequence like:

$$\pi_2(\mathcal{G}) \doteq \ker(\partial) \xrightarrow{i} \boxed{E \xrightarrow{\partial} \mathcal{G}} \xrightarrow{p} \pi_1(\mathcal{G}) \doteq \operatorname{coker}(\partial).$$

- 3. Yield cohomology class $\omega \in H^3(\pi_1(\mathcal{G}), \pi_2(\mathcal{G}))$, the *k*-invariant.
- 4. An algebraic 2-type is a triple (A, K, ω) , where A is an abelian group with a left action of K, and $\omega \in H^3(K, A)$.

We have a fundamental algebraic 2-type functor:

{Pointed topological spaces} \rightarrow {Algebraic 2-types} sending a space X to the triple $(\pi_2(X), \pi_1(X), k(X))$, called the algebraic 2-type of X.

We also have a functor:

$\begin{array}{l} \rho_{2} \colon \ \{ \textbf{Crossed Modules} \} \to \{ \text{Algebraic 2-types} \} \\ \mathcal{G} \mapsto (\pi_{2}(\mathcal{G}), \pi_{1}(\mathcal{G}), k(\mathcal{G})). \end{array}$

- 1. Crossed modules and their maps form a category.
- 2. Each crossed module embeds into an exact sequence like:

$$\pi_2(\mathcal{G}) \doteq \ker(\partial) \xrightarrow{i} \boxed{E \xrightarrow{\partial} \mathcal{G}} \xrightarrow{p} \pi_1(\mathcal{G}) \doteq \operatorname{coker}(\partial).$$

- 3. Yield cohomology class $\omega \in H^3(\pi_1(\mathcal{G}), \pi_2(\mathcal{G}))$, the *k*-invariant.
- 4. An algebraic 2-type is a triple (A, K, ω) , where A is an abelian group with a left action of K, and $\omega \in H^3(K, A)$.

We have a fundamental algebraic 2-type functor:

{Pointed topological spaces} \rightarrow {Algebraic 2-types} sending a space X to the triple $(\pi_2(X), \pi_1(X), k(X))$, called the algebraic 2-type of X.

We also have a functor:

$$\begin{array}{l} \rho_{2} \colon \{ \textbf{Crossed Modules} \} \to \{ \text{Algebraic 2-types} \} \\ \mathcal{G} \mapsto (\pi_{2}(\mathcal{G}), \pi_{1}(\mathcal{G}), k(\mathcal{G})). \end{array}$$

- 1. Crossed modules and their maps form a category.
- 2. Each crossed module embeds into an exact sequence like:

$$\pi_2(\mathcal{G}) \doteq \ker(\partial) \xrightarrow{i} \boxed{E \xrightarrow{\partial} \mathcal{G}} \xrightarrow{p} \pi_1(\mathcal{G}) \doteq \operatorname{coker}(\partial).$$

- 3. Yield cohomology class $\omega \in H^3(\pi_1(\mathcal{G}), \pi_2(\mathcal{G}))$, the *k*-invariant.
- 4. An algebraic 2-type is a triple (A, K, ω) , where A is an abelian group with a left action of K, and $\omega \in H^3(K, A)$.

We have a fundamental algebraic 2-type functor:

{Pointed topological spaces} \rightarrow {Algebraic 2-types} sending a space X to the triple $(\pi_2(X), \pi_1(X), k(X))$, called the algebraic 2-type of X.

We also have a functor:

$$\rho_{2}: \{ \text{Crossed Modules} \} \rightarrow \{ \text{Algebraic 2-types} \} \\ \mathcal{G} \mapsto (\pi_{2}(\mathcal{G}), \pi_{1}(\mathcal{G}), k(\mathcal{G})).$$

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$. Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**} / \cong . Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; F a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem *Ho*({**Crossed Modules**}) is equivalent to {**2-types**}:

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$. Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**} / \cong . Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; F a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem *Ho*({**Crossed Modules**}) is equivalent to {**2-types**}.

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$.

Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**} $/\cong$. Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; F a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem *Ho*({**Crossed Modules**}) is equivalent to {**2-types**}

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$. Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**}/ \cong . Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; *F* a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem *Ho*({**Crossed Modules**}) is equivalent to {**2-types**}

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$. Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**}/ \cong . Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; F a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem Ho({Crossed Modules}) is equivalent to {2-types}.

```
l.e.:
the category {Cof-Crossed Modules}/ ≅
is equivalent to category of 2-types
```

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$. Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**}/ \cong . Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; *F* a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem *Ho*({**Crossed Modules**}) is equivalent to {**2-types**}

```
I.e.:
the category {Cof-Crossed Modules}/ ≅
is equivalent to category of 2-types
```

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$. Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**}/ \cong . Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; *F* a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem *Ho*({**Crossed Modules**}) is equivalent to {**2-types**}.

```
I.e.:
the category {Cof-Crossed Modules}/ ≅
is equivalent to category of 2-types
```

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$. Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**}/ \cong . Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; *F* a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem

Ho({**Crossed Modules**}) *is equivalent to* {**2-types**}.

```
I.e.:
the category {Cof-Crossed Modules}/ ≅
is equivalent to category of 2-types
```

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$. Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**}/ \cong . Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; *F* a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem

Ho({Crossed Modules}) is equivalent to {2-types}.

```
I.e.:
the category {Cof-Crossed Modules}/ ≅
is equivalent to category of 2-types.
```

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$. Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**}/ \cong . Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; *F* a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem

Ho({Crossed Modules}) is equivalent to {2-types}.

I.e.:

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$. Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**}/ \cong . Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; *F* a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem

Ho({**Crossed Modules**}) *is equivalent to* {**2-types**}.

I.e.:

the category {Cof-Crossed Modules}/ \cong

is equivalent to category of 2-types.

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$. Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**}/ \cong . Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; *F* a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem

Ho({**Crossed Modules**}) *is equivalent to* {**2-types**}.

I.e.:

```
the category {Cof-Crossed Modules}/ \cong is equivalent to category of 2-types.
```

The fundamental crossed module $\Pi_2(X, X^1)$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 ${Cof-Crossed Modules}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton. We have a crossed module:

 $\Pi_2(X, X^1) = (\partial \colon \pi_2(X, X^1) \to \pi_1(X^1), \triangleright)$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2: \ \{\text{CW-complexes}\} \ / \cong \ \longrightarrow \{\text{Cof-Crossed Modules}\} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- Π₂(X, X¹) faithfully represents the homotopy 2-type of X. Hence π₂(X) = ker(∂), π₁(X) = coker(∂), k(X) = k(Π₂(X)).

The fundamental crossed module $\Pi_2(X, X^1)$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{Cof-Crossed Modules\} / \cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton. We have a crossed module:

 $\Pi_2(X, X^1) = (\partial \colon \pi_2(X, X^1) \to \pi_1(X^1), \triangleright)$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2: \ \{\text{CW-complexes}\} \ / \cong \ \longrightarrow \{\text{Cof-Crossed Modules}\} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- Π₂(X, X¹) faithfully represents the homotopy 2-type of X. Hence π₂(X) = ker(∂), π₁(X) = coker(∂), k(X) = k(Π₂(X)).

The fundamental crossed module $\Pi_2(X, X^1)$ Theorem $Ho(\{\text{Crossed Modules}\}) \cong \{2\text{-types}\}$. I.e.

 $\{Cof-Crossed Modules\} / \cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton. We have a crossed module:

 $\Pi_2(X, X^1) = (\partial \colon \pi_2(X, X^1) \to \pi_1(X^1), \triangleright)$

▶ Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2: \ \{\text{CW-complexes}\} \ / \cong \ \longrightarrow \{\text{Cof-Crossed Modules}\} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

The fundamental crossed module $\Pi_2(X, X^1)$ Theorem $Ho(\{\text{Crossed Modules}\}) \cong \{2\text{-types}\}$. I.e.

 $\{Cof-Crossed Modules\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton. We have a crossed module:

 $\Pi_2(X, X^1) = (\partial \colon \pi_2(X, X^1) \to \pi_1(X^1), \triangleright)$

▶ Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2: \ \{\text{CW-complexes}\} \ / \cong \ \longrightarrow \{\text{Cof-Crossed Modules}\} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- Π₂(X, X¹) faithfully represents the homotopy 2-type of X. Hence π₂(X) = ker(∂), π₁(X) = coker(∂), k(X) = k(Π₂(X)).

The fundamental crossed module $\Pi_2(X, X^1)$ Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e. $\{Cof-Crossed Modules\}/\cong \text{ is equivalent to category of 2-types.}$

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton. We have a crossed module:

 $\Pi_2(X, X^1) = (\partial \colon \pi_2(X, X^1) \to \pi_1(X^1), \triangleright)$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2: \ \{\text{CW-complexes}\} \ / \cong \ \longrightarrow \{\text{Cof-Crossed Modules}\} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- Π₂(X, X¹) faithfully represents the homotopy 2-type of X. Hence π₂(X) = ker(∂), π₁(X) = coker(∂), k(X) = k(Π₂(X)).

The fundamental crossed module $\Pi_2(X, X^1)$ Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e. $\{Cof-Crossed Modules\}/\cong \text{ is equivalent to category of 2-types.}$ This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton. We have a crossed module:

$\Pi_2(X, X^1) = (\partial \colon \pi_2(X, X^1) \to \pi_1(X^1), \triangleright).$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps.
 We have a functor

 $\Pi_2 \colon \{ \mathsf{CW}\text{-}\mathsf{complexes} \} \ / \cong \ \longrightarrow \{ \mathsf{Cof}\text{-}\mathsf{Crossed} \ \mathsf{Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

Theorem $\mathit{Ho}(\{Crossed\ Modules\})\cong\{2\text{-types}\}$. I.e.

 $\{\mbox{Cof-Crossed Modules}\}/\cong\mbox{is equivalent to category of 2-types}.$

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton. We have a crossed module:

 $\Pi_2(X, X^1) = (\partial \colon \pi_2(X, X^1) \to \pi_1(X^1), \triangleright).$

▶ Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \{ \mathsf{CW}\text{-}\mathsf{complexes} \} \ / \cong \ \longrightarrow \{ \mathsf{Cof}\text{-}\mathsf{Crossed} \ \mathsf{Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- Π₂(X, X¹) faithfully represents the homotopy 2-type of X. Hence π₂(X) = ker(∂), π₁(X) = coker(∂), k(X) = k(Π₂(X)).

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{\mbox{Cof-Crossed Modules}\}/\cong\mbox{is equivalent to category of 2-types}.$

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton. We have a crossed module:

 $\Pi_2(X,X^1) = (\partial \colon \pi_2(X,X^1) \to \pi_1(X^1), \triangleright).$

▶ Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2: \ \{\text{CW-complexes}\} \ / \cong \ \longrightarrow \{\text{Cof-Crossed Modules}\} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- Π₂(X, X¹) faithfully represents the homotopy 2-type of X. Hence π₂(X) = ker(∂), π₁(X) = coker(∂), k(X) = k(Π₂(X)).

Theorem $\mathit{Ho}(\{Crossed\ Modules\})\cong\{2\text{-types}\}$. I.e.

 $\{\mbox{Cof-Crossed Modules}\}/\cong\mbox{is equivalent to category of 2-types}.$

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

 $\Pi_2(X, X^1) = (\partial \colon \pi_2(X, X^1) \to \pi_1(X^1), \triangleright).$

 Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \{ \mathsf{CW}\text{-}\mathsf{complexes} \} \ / \cong \ \longrightarrow \{ \mathsf{Cof}\text{-}\mathsf{Crossed} \ \mathsf{Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- Π₂(X, X¹) faithfully represents the homotopy 2-type of X. Hence π₂(X) = ker(∂), π₁(X) = coker(∂), k(X) = k(Π₂(X)).

Theorem $\mathit{Ho}(\{Crossed\ Modules\})\cong\{2\text{-types}\}$. I.e.

 $\{\mbox{Cof-Crossed Modules}\}/\cong\mbox{is equivalent to category of 2-types}.$

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1) o\pi_1(X^1), riangle).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \{ \mathsf{CW}\text{-}\mathsf{complexes} \} \ / \cong \ \longrightarrow \{ \mathsf{Cof}\text{-}\mathsf{Crossed} \ \mathsf{Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \ \pi_1(X) = \operatorname{coker}(\partial), \ k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{Cof-Crossed Modules\} / \cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1) = (\partial \colon \pi_2(X,X^1) \to \pi_1(X^1), \triangleright).$$

▶ Let {**CW-complexes**}/ ≅ be the category with

- objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \rightarrow Y$ are pointed homotopy classes of pointed maps. We have a functor
- $\Pi_2: \ \{\text{CW-complexes}\} \ / \cong \ \longrightarrow \{\text{Cof-Crossed Modules}\} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- Π₂(X, X¹) faithfully represents the homotopy 2-type of X. Hence π₂(X) = ker(∂), π₁(X) = coker(∂), k(X) = k(Π₂(X)).

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{Cof-Crossed Modules\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1) = (\partial \colon \pi_2(X,X^1) \to \pi_1(X^1), \triangleright).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 : \ \{\text{CW-complexes}\} \ / \cong \ \longrightarrow \{\text{Cof-Crossed Modules}\} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- Π₂(X, X¹) faithfully represents the homotopy 2-type of X. Hence π₂(X) = ker(∂), π₁(X) = coker(∂), k(X) = k(Π₂(X)).

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{\text{Cof-Crossed Modules}\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1) o\pi_1(X^1), arrow).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2: \ \{\text{CW-complexes}\} \ / \cong \ \longrightarrow \{\text{Cof-Crossed Modules}\} \ / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{\text{Cof-Crossed Modules}\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1) o\pi_1(X^1),
ho).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2: \ \{\text{CW-complexes}\} \ / \cong \ \longrightarrow \{\text{Cof-Crossed Modules}\} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{Cof-Crossed Modules\} / \cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1) o\pi_1(X^1), riangle).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \ \{\text{CW-complexes}\} \ / \cong \ \longrightarrow \{\text{Cof-Crossed Modules}\} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{Cof-Crossed Modules\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1) = (\partial \colon \pi_2(X,X^1) \to \pi_1(X^1), \triangleright).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \ \{ \textbf{CW-complexes} \} \ / \cong \ \longrightarrow \{ \textbf{Cof-Crossed Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{\text{Cof-Crossed Modules}\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1) o\pi_1(X^1), arrow).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \ \{ \textbf{CW-complexes} \} \ / \cong \ \longrightarrow \{ \textbf{Cof-Crossed Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{Cof-Crossed Modules\} / \cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1) = (\partial \colon \pi_2(X,X^1) \to \pi_1(X^1), \triangleright).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \ \{ \textbf{CW-complexes} \} \ / \cong \ \longrightarrow \{ \textbf{Cof-Crossed Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{\text{Cof-Crossed Modules}\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1) o\pi_1(X^1), arrow).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \ \{ \textbf{CW-complexes} \} \ / \cong \ \longrightarrow \{ \textbf{Cof-Crossed Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{\text{Cof-Crossed Modules}\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1) = (\partial \colon \pi_2(X,X^1) \to \pi_1(X^1), \triangleright).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \ \{ \textbf{CW-complexes} \} \ / \cong \ \longrightarrow \{ \textbf{Cof-Crossed Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial)$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{Cof-Crossed Modules\} / \cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1) = (\partial \colon \pi_2(X,X^1) \to \pi_1(X^1), \triangleright).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \ \{ \textbf{CW-complexes} \} \ / \cong \ \longrightarrow \{ \textbf{Cof-Crossed Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \ \pi_1(X) = \operatorname{coker}(\partial), \ k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{Cof-Crossed Modules\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1) = (\partial \colon \pi_2(X,X^1) \to \pi_1(X^1), \triangleright).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \ \{ \textbf{CW-complexes} \} \ / \cong \ \longrightarrow \{ \textbf{Cof-Crossed Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \ \pi_1(X) = \operatorname{coker}(\partial), \ k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{Cof-Crossed Modules\} / \cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1) o\pi_1(X^1), arrow).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \ \{ \textbf{CW-complexes} \} \ / \cong \ \longrightarrow \{ \textbf{Cof-Crossed Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \ \pi_1(X) = \operatorname{coker}(\partial), \ k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{Cof-Crossed Modules\} / \cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1) = (\partial \colon \pi_2(X,X^1) \to \pi_1(X^1), \triangleright).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \ \{ \textbf{CW-complexes} \} \ / \cong \ \longrightarrow \{ \textbf{Cof-Crossed Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \ \pi_1(X) = \operatorname{coker}(\partial), \ k(X) = k(\Pi_2(X)).$

Presentation of $\Pi_2(X, X^1)$ by generators and relations

Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

Π₂(X, X¹) = (∂: π₂(X³, X¹) → π₁(X¹))
 is obtained from the free crossed module Π₂(X², X¹)
 by imposing a crossed module 2-relation for each 3-cell.

 I₂(X, X¹) = U \langle {2-cells} ∂/∂ π₁(X¹) | ∂(c) = 0 for each c ∈ {3-cells} \langle
 Also Π₂ satisfies a van Kampen type property. (Brown-Higgins).

Presentation of $\Pi_2(X, X^1)$ by generators and relations

Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

$$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

π₁(X¹) = F(1-cells): free group on the set of 1-cells of X.
 Π₂(X², X¹) = (∂: π₂(X², X¹) → π₁(X¹))

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$

by generators and relations. (In the world of crossed modules.)

- π₁(X¹) = F(1-cells): free group on the set of 1-cells of X.
 Π₂(X², X¹) = (∂: π₂(X², X¹) → π₁(X¹))
- is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

$$\Pi_2(X,X^1) = (\pi_2(X,X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

π₁(X¹) = F(1-cells): free group on the set of 1-cells of X.
 Π₂(X², X¹) = (∂: π₂(X², X¹) → π₁(X¹))

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

$$\Pi_2(X,X^1) = (\pi_2(X,X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

Presentation of $\Pi_2(X, X^1)$ by generators and relations

Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

Procedure to describe a presentation of the crossed module:

$$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$ is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

Procedure to describe a presentation of the crossed module:

$$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

π₁(X¹) = F(1-cells): free group on the set of 1-cells of X.
 Π₂(X², X¹) = (∂: π₂(X², X¹) → π₁(X¹))

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

 Π₂(X, X¹) = (∂: π₂(X³, X¹) → π₁(X¹)) is obtained from the free crossed module Π₂(X², X¹) by imposing a crossed module 2-relation for each 3-cell.
 2(X, X¹) = U ({2-cells} → π₁(X¹) | ∂(c) = 0 for each c ∈ {3-cells}) Also Π₂ satisfies a van Kampen type property. (Brown-Higgins).

Procedure to describe a presentation of the crossed module:

$$\Pi_2(X,X^1) = (\pi_2(X,X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X, X^1) = (\partial : \pi_2(X^3, X^1) \to \pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2, X^1)$ by imposing a crossed module 2-relation for each 3-cell. $\mathfrak{g}(X, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 0 \text{ for each } c \in \{3\text{-cells}\} \right\rangle$

Procedure to describe a presentation of the crossed module:

$$\Pi_2(X,X^1) = (\pi_2(X,X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

Procedure to describe a presentation of the crossed module:

$$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X, X^1) = (\partial : \pi_2(X^3, X^1) \to \pi_1(X^1))$

is obtained from the free crossed module $\Pi_2(X^2, X^1)$ by imposing a crossed module 2-relation for each 3-cell.

$$\Pi_2(X, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 0 \text{ for each } c \in \{3\text{-cells}\} \right\rangle$$

Procedure to describe a presentation of the crossed module:

$$\Pi_2(X,X^1) = (\pi_2(X,X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

 Π₂(X, X¹) = (∂: π₂(X³, X¹) → π₁(X¹)) is obtained from the free crossed module Π₂(X², X¹) by imposing a crossed module 2-relation for each 3-cell.
 (X, X¹) = U ({2-cells} → π₁(X¹) | ∂(c) = 0 for each c ∈ {3-cells}) Also Π₂ satisfies a van Kampen type property. (Brown-Higgins).

Procedure to describe a presentation of the crossed module:

$$\Pi_2(X,X^1) = (\pi_2(X,X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X, X^1) = (\partial : \pi_2(X^3, X^1) \to \pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2, X^1)$ by imposing a crossed module 2-relation for each 3-cell.

Procedure to describe a presentation of the crossed module:

$$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X, X^1) = (\partial : \pi_2(X^3, X^1) \to \pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2, X^1)$ by imposing a crossed module 2-relation for each 3-cell.

$$\Pi_2(X,X^1) = \mathcal{U}\left<\{\text{2-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 0 \text{ for each } c \in \{\text{3-cells}\}\right>.$$

Procedure to describe a presentation of the crossed module:

$$\Pi_2(X,X^1) = (\pi_2(X,X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X, X^1) = (\partial : \pi_2(X^3, X^1) \to \pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2, X^1)$ by imposing a crossed module 2-relation for each 3-cell.

$$\Pi_2(X, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 0 \text{ for each } c \in \{3\text{-cells}\} \right\rangle.$$

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X If X and Y are homotopic CW-complexes then $\exists m, n \in \mathbb{Z}_0^+$ such that: $\Pi_2(X, X^1) = \Pi_2(Y, Y^1)$.

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

 $B_{\mathcal{G}}$ is the classifying space of \mathcal{G} . $\operatorname{TOP}(X, B_{\mathcal{G}})$ function space.

The homotopy invariant $I_{\mathcal{G}}$.

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of XIf X and Y are homotopic CW-complexes then $\exists m, n \in \mathbb{Z}_0^+$ such that: $\Pi_2(X, X^1) = \Pi_2(Y, Y^1)$.

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

 $B_{\mathcal{G}}$ is the classifying space of \mathcal{G} . TOP $(X, B_{\mathcal{G}})$ function space.

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X If X and Y are homotopic CW-complexes then $\exists m, n \in \mathbb{Z}_0^+$ such that:

 $\Pi_2(X, X^1) = \Pi_2(Y, Y^1)$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

 $I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X If X and Y are homotopic CW-complexes then $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X,X^1) = \Pi_2(Y,Y^1)$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X If X and Y are homotopic CW-complexes then $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X,X^1) = \Pi_2(Y,Y^1)$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

 $I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X If X and Y are homotopic CW-complexes then $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X,X^1) \lor = \Pi_2(Y,Y^1)$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

 $I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$

does not depend on the chosen CW-decomposition of X. Moreover, $I_G(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X If X and Y are homotopic CW-complexes then $\exists m, n \in \mathbb{Z}_0^+$ such that:

 $\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1) = \Pi_2(Y,Y^1)$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

 $I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$

٠

does not depend on the chosen CW-decomposition of X. Moreover, $I_G(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X If X and Y are homotopic CW-complexes then $\exists m, n \in \mathbb{Z}_0^+$ such that:

 $\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1)^{\vee m} = \Pi_2(Y,Y^1)$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

 $l_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$

.

does not depend on the chosen CW-decomposition of *X*. Moreover, *I_G(X)* is a homotopy invariant of *X*. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X If X and Y are homotopic CW-complexes then $\exists m, n \in \mathbb{Z}_0^+$ such that:

 $\Pi_2(X, X^1) \vee \Pi_2(D^2, S^1)^{\vee m} = \Pi_2(Y, Y^1) \vee \Pi_2(D^2, S^1)^{\vee n}.$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

 $I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$

does not depend on the chosen CW-decomposition of *X*. Moreover, *I_G(X)* is a homotopy invariant of *X*. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X If X and Y are homotopic CW-complexes then $\exists m, n \in \mathbb{Z}_0^+$ such that:

 $\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1)^{\vee m} = \Pi_2(Y,Y^1) \vee \Pi_2(D^2,S^1)^{\vee n}.$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

 $I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$

does not depend on the chosen CW-decomposition of X. Moreover, *I_g(X)* is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X If X and Y are homotopic CW-complexes then $\exists m, n \in \mathbb{Z}_0^+$ such that:

 $\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1)^{\vee m} = \Pi_2(Y,Y^1) \vee \Pi_2(D^2,S^1)^{\vee n}.$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

 $I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$

does not depend on the chosen CW-decomposition of X. Moreover, $I_G(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X If X and Y are homotopic CW-complexes then $\exists m, n \in \mathbb{Z}_0^+$ such that:

 $\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1)^{\vee m} = \Pi_2(Y,Y^1) \vee \Pi_2(D^2,S^1)^{\vee n}.$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_G(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X If X and Y are homotopic CW-complexes then $\exists m, n \in \mathbb{Z}_0^+$ such that:

 $\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1)^{\vee m} = \Pi_2(Y,Y^1) \vee \Pi_2(D^2,S^1)^{\vee n}.$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $l_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X If X and Y are homotopic CW-complexes then $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X, X^1) \vee \Pi_2(D^2, S^1)^{\vee m} = \Pi_2(Y, Y^1) \vee \Pi_2(D^2, S^1)^{\vee n}$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of } X}} \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X If X and Y are homotopic CW-complexes then $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X, X^1) \vee \Pi_2(D^2, S^1)^{\vee m} = \Pi_2(Y, Y^1) \vee \Pi_2(D^2, S^1)^{\vee n}$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of } X}} \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$l_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

s the classifying space of \mathcal{G} . $\operatorname{TOP}(X, B_{\mathcal{G}})$ function space

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X If X and Y are homotopic CW-complexes then $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X, X^1) \vee \Pi_2(D^2, S^1)^{\vee m} = \Pi_2(Y, Y^1) \vee \Pi_2(D^2, S^1)^{\vee n}$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of } X}} \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $l_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$l_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$
s the classifying space of \mathcal{G} . $\operatorname{TOP}(X, B_{\mathcal{G}})$ function space

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X If X and Y are homotopic CW-complexes then $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X, X^1) \vee \Pi_2(D^2, S^1)^{\vee m} = \Pi_2(Y, Y^1) \vee \Pi_2(D^2, S^1)^{\vee n}$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of } X}} \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$l_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\text{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\text{TOP}(X, B_{\mathcal{G}}), f)}$$

the classifying space of \mathcal{G} . $\text{TOP}(X, B_{\mathcal{G}})$ function sp

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X If X and Y are homotopic CW-complexes then $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X, X^1) \vee \Pi_2(D^2, S^1)^{\vee m} = \Pi_2(Y, Y^1) \vee \Pi_2(D^2, S^1)^{\vee n}$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of } X}} \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, \mathcal{B}_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, \mathcal{B}_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X If X and Y are homotopic CW-complexes then $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X, X^1) \vee \Pi_2(D^2, S^1)^{\vee m} = \Pi_2(Y, Y^1) \vee \Pi_2(D^2, S^1)^{\vee n}$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of } X}} \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X If X and Y are homotopic CW-complexes then $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1)^{\vee m} = \Pi_2(Y,Y^1) \vee \Pi_2(D^2,S^1)^{\vee n}$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of } X}} \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X If X and Y are homotopic CW-complexes then $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X, X^1) \vee \Pi_2(D^2, S^1)^{\vee m} = \Pi_2(Y, Y^1) \vee \Pi_2(D^2, S^1)^{\vee n}$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of } X}} \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Let $\Sigma \subset S^4 = \mathbb{R}^4 \cup \{\infty\}$ be a knotted surface.

(Any genus, any number of components.)

Suppose the projection on the *t*-variable is a Morse function in Σ .

To simplify, suppose critical points appear in increasing order.

Let $\Sigma \subset S^4 = \mathbb{R}^4 \cup \{\infty\}$ be a knotted surface.

(Any genus, any number of components.) Suppose the projection on the *t*-variable is a Morse function in Σ . To simplify, suppose critical points appear in increasing order. Let $\Sigma_t = \Sigma \cap (\mathbb{R}^3 \times \{t\})$, called the "still of Σ at *t*".

Let $\Sigma \subset S^4 = \mathbb{R}^4 \cup \{\infty\}$ be a knotted surface.

(Any genus, any number of components.)

Suppose the projection on the *t*-variable is a Morse function in Σ . To simplify, suppose critical points appear in increasing order. Let $\Sigma_t = \Sigma \cap (\mathbb{R}^3 \times \{t\})$, called the "still of Σ at *t*".

Let $\Sigma \subset S^4 = \mathbb{R}^4 \cup \{\infty\}$ be a knotted surface.

(Any genus, any number of components.)

Suppose the projection on the *t*-variable is a Morse function in Σ .

To simplify, suppose critical points appear in increasing order. Let $\Sigma_t = \Sigma \cap (\mathbb{R}^3 \times \{t\})$, called the "still of Σ at t".

Let $\Sigma \subset S^4 = \mathbb{R}^4 \cup \{\infty\}$ be a knotted surface.

(Any genus, any number of components.)

Suppose the projection on the *t*-variable is a Morse function in Σ .

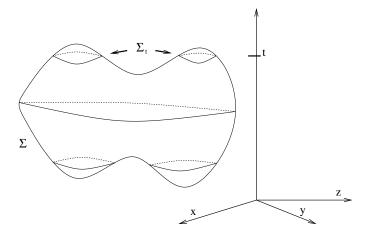
To simplify, suppose critical points appear in increasing order.

Let $\Sigma \subset S^4 = \mathbb{R}^4 \cup \{\infty\}$ be a knotted surface.

(Any genus, any number of components.)

Suppose the projection on the *t*-variable is a Morse function in Σ .

To simplify, suppose critical points appear in increasing order.

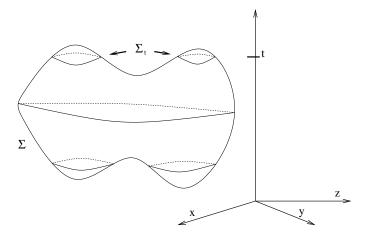


Let $\Sigma \subset S^4 = \mathbb{R}^4 \cup \{\infty\}$ be a knotted surface.

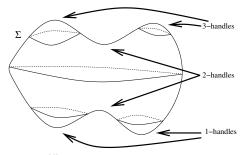
(Any genus, any number of components.)

Suppose the projection on the *t*-variable is a Morse function in Σ .

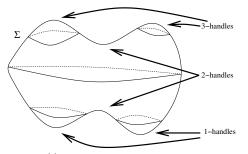
To simplify, suppose critical points appear in increasing order.



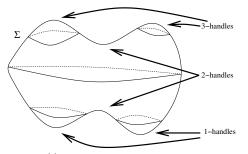
- A minimal point in Σ yields a 1-handle of S⁴ \ Σ. (Hence a free generator of the group π₁(M⁽¹⁾).)
- A saddle point in Σ yields a 2-handle of S⁴ \ Σ. (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).)
- A maximal point in Σ yields a 3-handle of S⁴ \ Σ. (Hence a 2-relation needs to be imposed on Π₂(M⁽²⁾, M⁽¹⁾) in order to get to Π₂(M, M⁽¹⁾).)
- A presentation for $\Pi_2(M,M^{(1)})$ can be derived from a 'movie' of Σ .



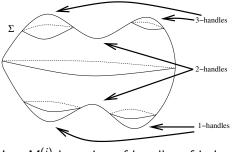
- A minimal point in Σ yields a 1-handle of S⁴ \ Σ. (Hence a free generator of the group π₁(M⁽¹⁾).)
- A saddle point in Σ yields a 2-handle of S⁴ \ Σ.
 (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).)
- A maximal point in Σ yields a 3-handle of S⁴ \ Σ. (Hence a 2-relation needs to be imposed on Π₂(M⁽²⁾, M⁽¹⁾) in order to get to Π₂(M, M⁽¹⁾).)
- A presentation for $\Pi_2(M,M^{(1)})$ can be derived from a 'movie' of Σ .



- A minimal point in Σ yields a 1-handle of S⁴ \ Σ.
 (Hence a free generator of the group π₁(M⁽¹⁾).)
- A saddle point in Σ yields a 2-handle of S⁴ \ Σ.
 (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).)
- A maximal point in Σ yields a 3-handle of S⁴ \ Σ. (Hence a 2-relation needs to be imposed on Π₂(M⁽²⁾, M⁽¹⁾) in order to get to Π₂(M, M⁽¹⁾).)
- A presentation for $\Pi_2(M,M^{(1)})$ can be derived from a 'movie' of Σ .



- A minimal point in Σ yields a 1-handle of S⁴ \ Σ.
 (Hence a free generator of the group π₁(M⁽¹⁾).)
- A saddle point in Σ yields a 2-handle of S⁴ \ Σ.
 (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).)
- A maximal point in Σ yields a 3-handle of S⁴ \ Σ. (Hence a 2-relation needs to be imposed on Π₂(M⁽²⁾, M⁽¹⁾) in order to get to Π₂(M, M⁽¹⁾).)
- A presentation for $\Pi_2(M,M^{(1)})$ can be derived from a 'movie' of Σ .



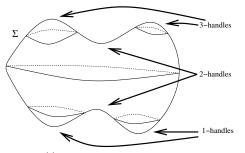
Let $M^{(i)}$ be union of handles of index $\leq i$.

• A minimal point in Σ yields a 1-handle of $S^4 \setminus \Sigma$.

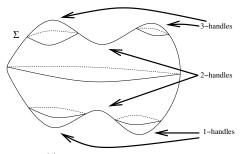
Hence a free generator of the group $\pi_1(M^{(1)})$.)

- A saddle point in Σ yields a 2-handle of S⁴ \ Σ. (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).)
- A maximal point in Σ yields a 3-handle of S⁴ \ Σ. (Hence a 2-relation needs to be imposed on Π₂(M⁽²⁾, M⁽¹⁾) in order to get to Π₂(M, M⁽¹⁾).)

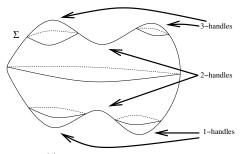
A presentation for $\Pi_2(M,M^{(1)})$ can be derived from a 'movie' of Σ .



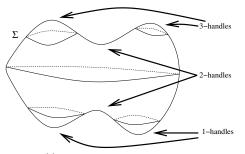
- A minimal point in Σ yields a 1-handle of S⁴ \ Σ.
 (Hence a free generator of the group π₁(M⁽¹⁾).)
- A saddle point in Σ yields a 2-handle of S⁴ \ Σ. (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).)
 A maximal point in Σ yields a 3-handle of S⁴ \ Σ. (Hence a 2-relation needs to be imposed on Π₂(M⁽²⁾, M⁽¹⁾))
- A presentation for $\Pi_2(M,M^{(1)})$ can be derived from a 'movie' of Σ .



- A minimal point in Σ yields a 1-handle of S⁴ \ Σ.
 (Hence a free generator of the group π₁(M⁽¹⁾).)
- A saddle point in Σ yields a 2-handle of $S^4 \setminus \Sigma$.
 - (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).)
 A maximal point in Σ yields a 3-handle of S⁴ \ Σ.
 - (Hence a 2-relation needs to be imposed on $\Pi_2(M^{(2)}, M^{(1)})$ in order to get to $\Pi_2(M, M^{(1)})$.)
- A presentation for $\Pi_2(M,M^{(1)})$ can be derived from a 'movie' of $\Sigma.$



- A minimal point in Σ yields a 1-handle of S⁴ \ Σ.
 (Hence a free generator of the group π₁(M⁽¹⁾).)
- A saddle point in Σ yields a 2-handle of S⁴ \ Σ.
 (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).)
- A maximal point in Σ yields a 3-handle of S⁴ \ Σ.
 (Hence a 2-relation needs to be imposed on Π₂(M⁽²⁾, M⁽¹⁾) in order to get to Π₂(M, M⁽¹⁾).)
- A presentation for $\Pi_2(M, M^{(1)})$ can be derived from a 'movie' of Σ .

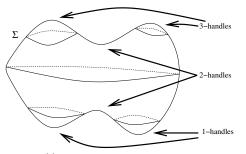


Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1-handle of S⁴ \ Σ.
 (Hence a free generator of the group π₁(M⁽¹⁾).)
- A saddle point in Σ yields a 2-handle of S⁴ \ Σ.
 (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).)
- A maximal point in Σ yields a 3-handle of $S^4 \setminus \Sigma$.

(Hence a 2-relation needs to be imposed on $\Pi_2(M^{(2)}, M^{(1)})$ in order to get to $\Pi_2(M, M^{(1)})$.)

A presentation for $\Pi_2(M, M^{(1)})$ can be derived from a 'movie' of Σ .

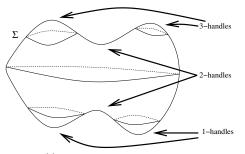


Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1-handle of S⁴ \ Σ.
 (Hence a free generator of the group π₁(M⁽¹⁾).)
- A saddle point in Σ yields a 2-handle of S⁴ \ Σ.
 (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).)
- A maximal point in Σ yields a 3-handle of S⁴ \ Σ. (Hence a 2-relation needs to be imposed on Π₂(M⁽²⁾, M⁽¹⁾) in order to get to Π₂(M, M⁽¹⁾).)

A presentation for $\Pi_2(M, M^{(1)})$ can be derived from a 'movie' of Σ .

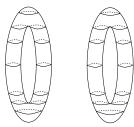
Handle decomposition (fat CW-decomposition) of $M = S^4 \setminus \Sigma$

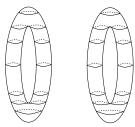


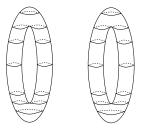
Let $M^{(i)}$ be union of handles of index $\leq i$.

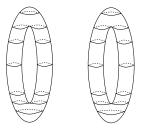
- A minimal point in Σ yields a 1-handle of S⁴ \ Σ.
 (Hence a free generator of the group π₁(M⁽¹⁾).)
- A saddle point in Σ yields a 2-handle of S⁴ \ Σ.
 (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).)
- A maximal point in Σ yields a 3-handle of S⁴ \ Σ. (Hence a 2-relation needs to be imposed on Π₂(M⁽²⁾, M⁽¹⁾) in order to get to Π₂(M, M⁽¹⁾).)

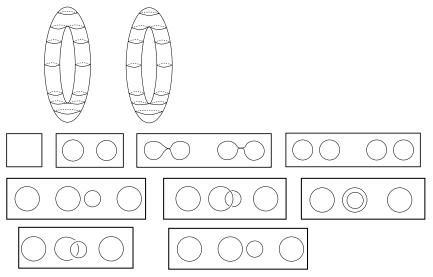
A presentation for $\Pi_2(M, M^{(1)})$ can be derived from a 'movie' of Σ .

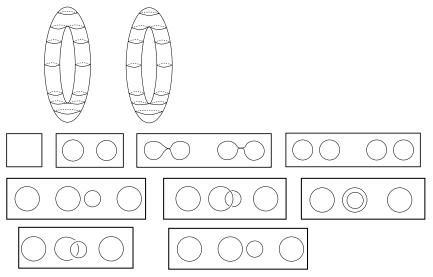


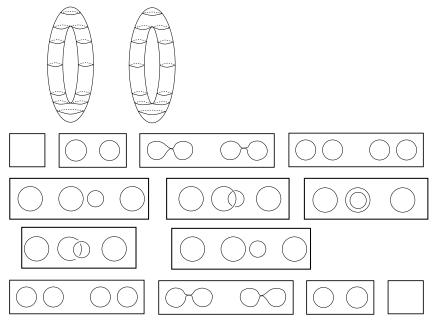












Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M.Hence a free generator of $X\in \pi_1(M^{(1)}).$ Denote it:

Concretely, $X\in\pi_1(M^{(1)})$ can be defined as:

A minimal point yields a 1-handle of M.Hence a free generator of $X\in \pi_1(M^{(1)}).$ Denote it:

Concretely, $X \in \pi_1(M^{(1)})$ can be defined as:

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M.Hence a free generator of $X\in \pi_1(M^{(1)}).$ Denote it:

Concretely, $X\in\pi_1(M^{(1)})$ can be defined as:

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M.Hence a free generator of $X\in \pi_1(M^{(1)}).$ Denote it:

Concretely, $X\in\pi_1(M^{(1)})$ can be defined as:

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M.Hence a free generator of $X\in \pi_1(M^{(1)}).$ Denote it:

Concretely, $X\in\pi_1(M^{(1)})$ can be defined as:

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M.Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M.Hence a free generator of $X\in \pi_1(M^{(1)}).$ Denote it:

Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M.Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it

Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X \in \pi_1(M^{(1)})$ can be defined as:

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X \in \pi_1(M^{(1)})$ can be defined as:

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:

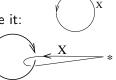
As the movie evolves, throughout an isotopy, we colour the link arcs of each still Σ_t by the generators of $\pi_1(M^{(1)})$ they represent. There are relations between generators at different times. For R2:

X

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

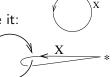
Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:



Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:



Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:

e it: $()^X$

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

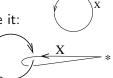
Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:

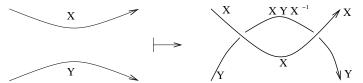
it: X

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:





Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of *M*.

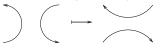
Each band gives free crossed module generator $e\in \pi_2(M^{(2)},M^{(1)}).$

Free generators of $\Pi_2(M^{(2)}, M^{(1)})$ at saddle points Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of *M*.

Each band gives free crossed module generator $e\in \pi_2(M^{(2)},M^{(1)}).$

Locally, an (oriented) saddle point looks like:



When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of *M*.

Each band gives free crossed module generator $e\in \pi_2(M^{(2)},M^{(1)}).$

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie:

This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of *M*.

Each band gives free crossed module generator $e\in \pi_2(M^{(2)},M^{(1)}).$

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie:

This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of *M*.

Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$.

Locally, an (oriented) saddle point looks like:



When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made,

and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$.

Locally, an (oriented) saddle point looks like:



When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$.

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$.

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$.

Locally, an (oriented) saddle point looks like:

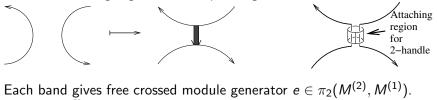
When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

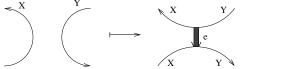
Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$.

Free generators of $\Pi_2(M^{(2)}, M^{(1)})$ at saddle points

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.





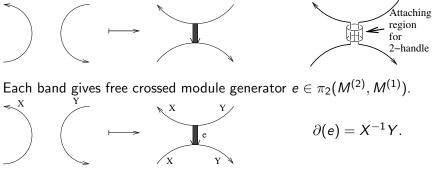
$$\partial(e) = X^{-1}Y.$$

Bands are to be kept and evolve throughout the rest of the movie. Each arc of a band in a projection gives element of $\pi_2(M^{(2)}, M^{(1)})$.

Free generators of $\Pi_2(M^{(2)}, M^{(1)})$ at saddle points

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

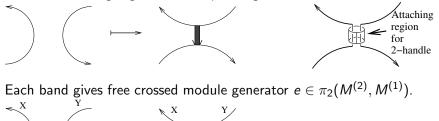


Bands are to be kept and evolve throughout the rest of the movie. Each arc of a band in a projection gives element of $\pi_2(\mathcal{M}^{(2)}, \mathcal{M}^{(1)})$.

Free generators of $\Pi_2(M^{(2)}, M^{(1)})$ at saddle points

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.



$$\partial(e) = X^{-1}Y.$$

Bands are to be kept and evolve throughout the rest of the movie. Each arc of a band in a projection gives element of $\pi_2(M^{(2)}, M^{(1)})$.

Locally, an oriented maximal point looks like:

Some bands will possibly be present. Before maximal point, configuration looks like:

Locally, an oriented maximal point looks like:

Some bands will possibly be present. Before maximal point, configuration looks like:

Locally, an oriented maximal point looks like:

 $: \bigcirc \mapsto \emptyset$

Some bands will possibly be present. Before maximal point, configuration looks like:

Locally, an oriented maximal point looks like:

 $\mapsto \emptyset$

Some bands will possibly be present. Before maximal point, configuration looks lik

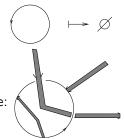
Locally, an oriented maximal point looks like:

 $\mapsto \emptyset$

Some bands will possibly be present. Before maximal point, configuration looks like:

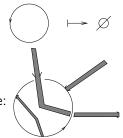
Locally, an oriented maximal point looks like:

Some bands will possibly be present. Before maximal point, configuration looks like:



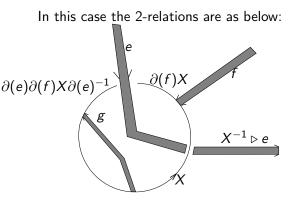
Locally, an oriented maximal point looks like:

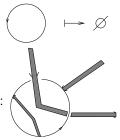
Some bands will possibly be present. Before maximal point, configuration looks like:



Locally, an oriented maximal point looks like:

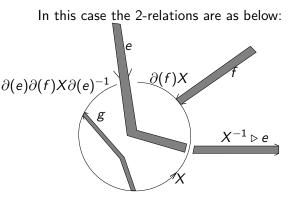
Some bands will possibly be present. Before maximal point, configuration looks like:

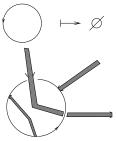




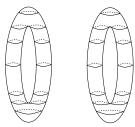
Locally, an oriented maximal point looks like:

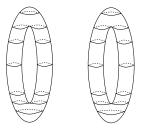
Some bands will possibly be present. Before maximal point, configuration looks like:

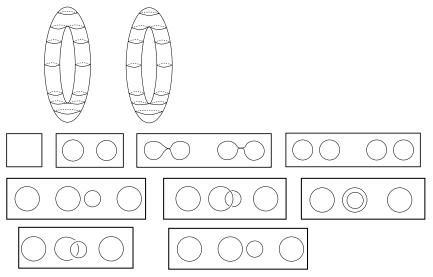


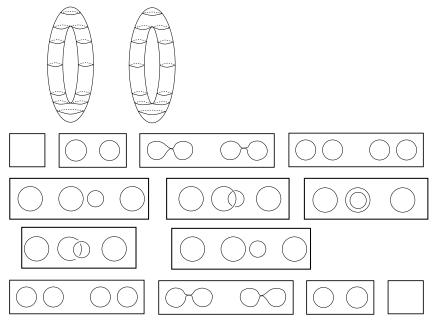


2-relation: $e f (X^{-1} \triangleright e^{-1})$ = 1.





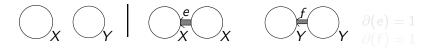




 $\partial(e) = 1$ $\partial(f) = 1$

 $\begin{aligned} \partial(g) &= 1\\ \partial(h) &= XYX^{-1}Y^{-1}\\ e \, e^{-1} \left(X \triangleright f^{-1}\right) f &= 1\\ (X \triangleright f)f^{-1} &= 1. \end{aligned}$

 $\begin{aligned} \partial(g) &= 1\\ \partial(h) &= XYX^{-1}Y^{-1}\\ e \ e^{-1} \left(X \triangleright f^{-1}\right) \ f &= 1\\ (X \triangleright f) f^{-1} &= 1. \end{aligned}$



 $X, Y \in \pi_1(M^{(1)});$

 $\partial(\mathbf{g}) = 1$ $\partial(h) = XYX^{-1}Y^{-1}$ $e e^{-1} (X \triangleright f^{-1}) f = 1$ $(X \triangleright f)f^{-1} = 1.$

 $\bigcirc_{\mathbf{v}} \bigcirc_{\mathbf{v}} | \bigcirc_{\mathbf{x}} e \bigcirc_{\mathbf{x}} f \bigcirc_{\mathbf{y}} e \bigcirc_{\mathbf{y}} e$

 $X, Y \in \pi_1(M^{(1)}); e, f \in \pi_2(M^{(2)}, M^{(1)}).$

 $\begin{aligned} \partial(g) &= 1\\ \partial(h) &= XYX^{-1}Y^{-1}\\ e \, e^{-1} \left(X \triangleright f^{-1}\right) f &= 1\\ (X \triangleright f)f^{-1} &= 1. \end{aligned}$

 $\bigcirc_{\mathbf{v}} \bigcirc_{\mathbf{v}} | \bigcirc_{\mathbf{v}} e \\ X \bigcirc_{\mathbf{X}} f \bigcirc_{\mathbf{X}} f \bigcirc_{\mathbf{Y}} e \\ \partial(e) = 1 \\ \partial(f) = 1$

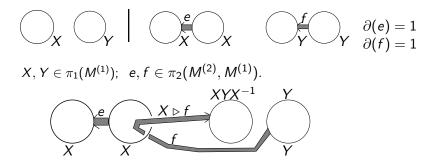
 $X, Y \in \pi_1(M^{(1)}); e, f \in \pi_2(M^{(2)}, M^{(1)}).$

 $\begin{aligned} \partial(g) &= 1\\ \partial(h) &= XYX^{-1}Y^{-1}\\ e \, e^{-1} \left(X \triangleright f^{-1}\right) f &= 1\\ (X \triangleright f)f^{-1} &= 1. \end{aligned}$

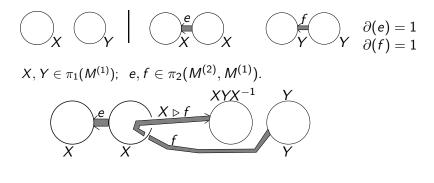
 $\bigcirc_{\mathbf{v}} \bigcirc_{\mathbf{v}} | \bigcirc_{\mathbf{v}} e \\ X \bigcirc_{\mathbf{x}} f \bigcirc_{\mathbf{x}} f \bigcirc_{\mathbf{x}} e \\ \partial(e) = 1 \\ \partial(f) = 1$

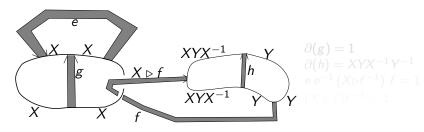
 $X, Y \in \pi_1(M^{(1)}); e, f \in \pi_2(M^{(2)}, M^{(1)}).$

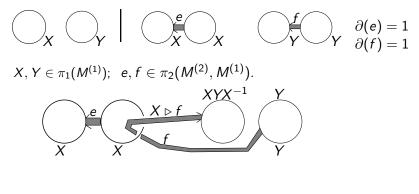
 $\begin{aligned} \partial(\mathbf{g}) &= 1\\ \partial(h) &= XYX^{-1}Y^{-1}\\ e \, e^{-1} \left(X \triangleright f^{-1}\right) \, f &= 1\\ (X \triangleright f)f^{-1} &= 1. \end{aligned}$

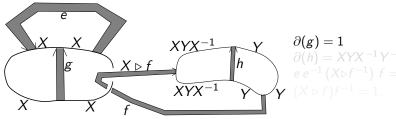


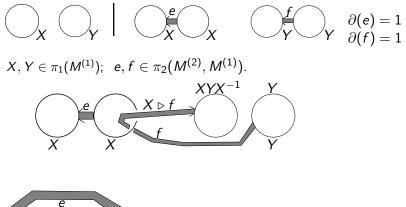
 $\begin{aligned} \partial(\mathbf{g}) &= 1\\ \partial(h) &= XYX^{-1}Y^{-1}\\ e \ e^{-1} \left(X \triangleright f^{-1}\right) \ f &= 1\\ (X \triangleright f) f^{-1} &= 1. \end{aligned}$

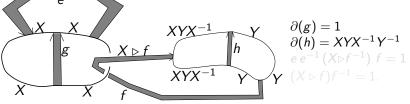


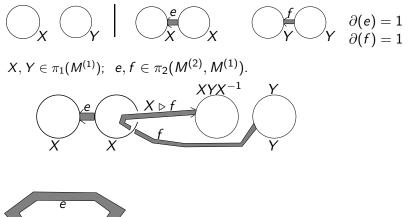


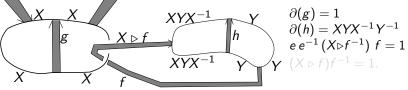


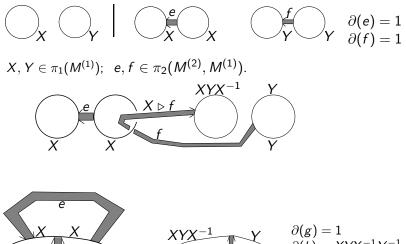


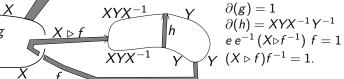












Hence

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \left\{ e, f, g, h \right\} \xrightarrow{\substack{\substack{f \mapsto 1 \\ g \mapsto 1 \\ h \to [X, Y]}} \mathcal{F}(\{X, Y\}) \mid f = X \triangleright f \right\rangle$$

 $\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

 $\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\} / \langle f = X.f \rangle$. Quotient of the free module over the algebra of Lauren polynomials in X and Y, on the generators e, f, g, by the relation f = X.f.

If $\mathcal{G} = (E o \mathcal{G}, \triangleright)$ is finite and $\partial(E) = \{1_{\mathcal{G}}\}$ then:

Hence

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \left\{ e, f, g, h \right\} \xrightarrow{\substack{\substack{f \mapsto 1 \\ g \mapsto 1 \\ h \to [X, Y]}} \mathcal{F}(\{X, Y\}) \mid f = X \triangleright f \right\rangle$$

 $\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

 $\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\} / \langle f = X.f \rangle.$ Quotient of the free module over the algebra of Lauren polynomials in X and X on the generators of form

by the relation f = X.f.

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{\mathbf{1}_{\mathcal{G}}\}$ then:

Hence

$$\Pi_2(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{\substack{e \mapsto 1 \\ f \mapsto 1 \\ g \mapsto 1}} \mathcal{F}(\{X, Y\}) \mid f = X \triangleright f \right\rangle$$

 $\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

 $\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}] \{e, f, g\} / \langle f = X.f \rangle.$

Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation f = X.f.

If $\mathcal{G}=(E
ightarrow \mathcal{G},
ho)$ is finite and $\partial(E)=\{1_{\mathcal{G}}\}$ then:

Hence

$$\Pi_2(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{f \mapsto 1 \\ g \mapsto 1 \\ h \mapsto [X, Y]}} \mathcal{F}(\{X, Y\}) \mid f = X \triangleright f \right\rangle$$

 $\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

 $\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\} / \langle f = X.f \rangle.$

Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation f = X.f.

If $\mathcal{G}=(E
ightarrow\mathcal{G},
ho)$ is finite and $\partial(E)=\{1_{\mathcal{G}}\}$ then:

Hence

$$\Pi_2(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{\substack{f \mapsto 1 \\ g \mapsto 1 \\ \to (X, Y]}} \mathcal{F}(\{X, Y\}) \mid f = X \triangleright f \right\rangle$$

$\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

 $\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\} / \langle f = X.f \rangle.$

Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation f = X.f.

If $\mathcal{G}=(E
ightarrow\mathcal{G},
ho)$ is finite and $\partial(E)=\{1_{\mathcal{G}}\}$ then:

Hence

$$\Pi_2(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{\substack{e \mapsto 1 \\ g \mapsto 1 \\ h \mapsto [X, Y]}} \mathcal{F}(\{X, Y\}) \mid f = X \triangleright f \right\rangle$$

 $\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

$$\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\} / \langle f = X.f \rangle.$$

Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation f = X.f.

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_{\mathcal{G}}\}$ then:

Hence

$$\Pi_2(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{\substack{e \mapsto 1 \\ g \mapsto 1 \\ h \mapsto [X, Y]}} \mathcal{F}(\{X, Y\}) \mid f = X \triangleright f \right\rangle$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1
angle$, free abelian group on X and Y.

$$\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\}/ < f = X.f > .$$

Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation f = X.f.

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{\mathbf{1}_G\}$ then: $I_{\mathcal{G}}(M) = \#\{(X, Y, f) \in G \times G \times E \mid XY = YX, f = X \triangleright f\}(\#E).$ $\Sigma =$ Knotted $T^2 \sqcup T^2$ above. $M = S^4 \setminus \Sigma$

Hence

$$\Pi_2(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{\substack{e \mapsto 1 \\ g \mapsto 1 \\ h \mapsto [X, Y]}} \mathcal{F}(\{X, Y\}) \mid f = X \triangleright f \right\rangle$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1
angle$, free abelian group on X and Y.

$$\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\}/ < f = X.f > .$$

Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation f = X.f.

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$ then: $I_{\mathcal{G}}(M) = \#\{(X, Y, f) \in G \times G \times E \mid XY = YX, f = X \triangleright f\}(\#E).$ $\Sigma =$ Knotted $T^2 \sqcup T^2$ above. $M = S^4 \setminus \Sigma$

Hence

$$\Pi_2(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{\substack{e \mapsto 1 \\ g \mapsto 1 \\ h \mapsto [X, Y]}} \mathcal{F}(\{X, Y\}) \mid f = X \triangleright f \right\rangle$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1
angle$, free abelian group on X and Y.

$$\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\}/ < f = X.f > .$$

Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation f = X.f.

If
$$\mathcal{G} = (E \to G, \triangleright)$$
 is finite and $\partial(E) = \{1_G\}$ then:

 $I_{\mathcal{G}}(M) = \#\{(X, Y, f) \in G \times G \times E \mid XY = YX, f = X \triangleright f\}(\#E).$

 $\Sigma =$ Knotted $T^2 \sqcup T^2$ above. $M = S^4 \setminus \Sigma$

Hence

$$\Pi_2(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{\substack{e \mapsto 1 \\ g \mapsto 1 \\ h \mapsto [X, Y]}} \mathcal{F}(\{X, Y\}) \mid f = X \triangleright f \right\rangle$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1
angle$, free abelian group on X and Y.

$$\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\}/ < f = X.f > .$$

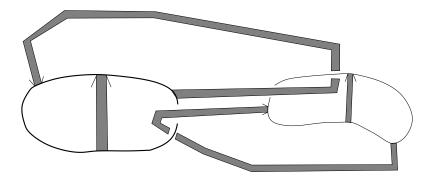
Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation f = X.f.

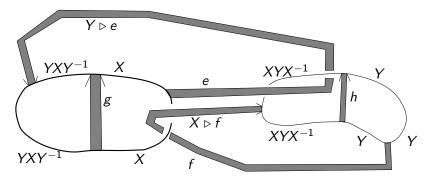
If
$$\mathcal{G} = (E \to G, \triangleright)$$
 is finite and $\partial(E) = \{1_G\}$ then:

 $I_{\mathcal{G}}(M) = \# \{ (X, Y, f) \in G \times G \times E \mid XY = YX, f = X \triangleright f \} (\#E).$

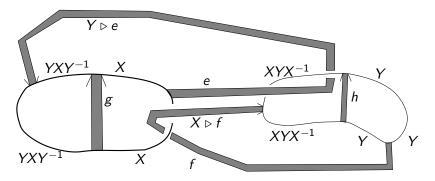
 $\begin{aligned} \partial(e) &= 1\\ \partial(f) &= 1\\ \partial(g) &= YXY^{-1}X^{-1}\\ \partial(h) &= XYX^{-1}Y^{-1}\\ (Y \triangleright e) e^{-1}(X \triangleright f^{-1}) f = \end{aligned}$

 $\partial(e) = 1$ $\partial(f) = 1$ $\partial(g) = YXY^{-1}X^{-1}$ $\partial(h) = XYX^{-1}Y^{-1}$ $(Y \triangleright e) e^{-1}(X \triangleright f^{-1}) f =$

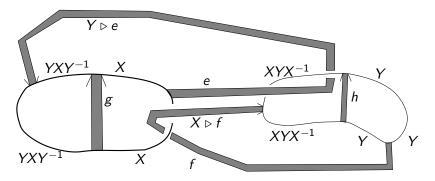




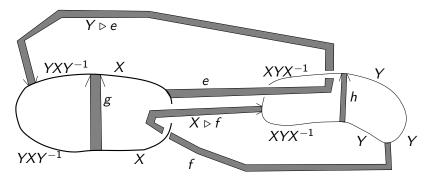
 $\partial(e) = 1$ $\partial(f) = 1$ $\partial(g) = YXY^{-1}X^{-1}$ $\partial(h) = XYX^{-1}Y^{-1}$ $(Y \triangleright e) e^{-1}(X \triangleright f^{-1}) f = 0$



 $\partial(e) = 1$ $\partial(f) = 1$ $\partial(g) = YXY^{-1}X^{-1}$ $\partial(h) = XYX^{-1}Y^{-1}$ $(Y \triangleright e) e^{-1}(X \triangleright f^{-1}) f = 0$



 $\partial(e) = 1$ $\partial(f) = 1$ $\partial(g) = YXY^{-1}X^{-1}$ $\partial(h) = XYX^{-1}Y^{-1}$ $(Y \triangleright e) e^{-1} (X \triangleright f^{-1}) f = 1$



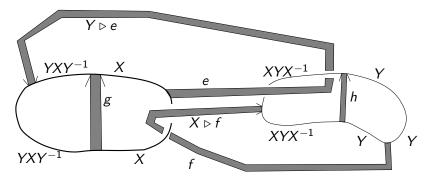
$$\partial(e) = 1$$

$$\partial(f) = 1$$

$$\partial(g) = YXY^{-1}X^{-1}$$

$$\partial(h) = XYX^{-1}Y^{-1}$$

$$(Y \triangleright e) e^{-1} (X \triangleright f^{-1}) f = 0$$



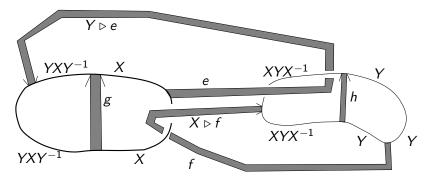
$$\partial(e) = 1$$

$$\partial(f) = 1$$

$$\partial(g) = YXY^{-1}X^{-1}$$

$$\partial(h) = XYX^{-1}Y^{-1}$$

 $(Y \triangleright e) e^{-1} (X \triangleright f^{-1}) f = 1$



$$\partial(e) = 1$$

$$\partial(f) = 1$$

$$\partial(g) = YXY^{-1}X^{-1}$$

$$\partial(h) = XYX^{-1}Y^{-1}$$

$$(Y \triangleright e) e^{-1} (X \triangleright f^{-1}) f = 1$$

Hence

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{g \mapsto [Y, X] \\ h \mapsto [X, Y]}} \mathcal{F}(X, Y) \mid \begin{array}{c} (Y \triangleright e) e^{-1} \\ (X \triangleright f^{-1}) f \\ =1 \end{array} \right\rangle$$

 $\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}$$

If $\mathcal{G}=(E
ightarrow {\mathcal{G}},
ho)$ is finite and $\partial(E)=\{1_{\mathcal{G}}\}$ then:

 $I_{\mathcal{G}}(M) = \# \left\{ (X, Y, e, f) \in G^2 \times E^2 \mid \frac{XY = YX,}{(Y \triangleright e) - e - (X \triangleright f) + f = 0} \right\}.$

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{g \mapsto 1 \\ h \mapsto [X, Y]}} \mathcal{F}(X, Y) \mid \begin{array}{c} (Y \triangleright e) e^{-1} \\ (X \triangleright f^{-1}) f \\ =1 \end{array} \right\rangle$$

 $\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}$$

If $\mathcal{G}=(E
ightarrow {\mathcal{G}},
ho)$ is finite and $\partial(E)=\{1_{\mathcal{G}}\}$ then:

 $I_{\mathcal{G}}(M) = \# \left\{ (X, Y, e, f) \in G^2 \times E^2 \mid \underset{(Y \triangleright e) - e - (X \triangleright f) + f = 0}{XY = YX} \right\}.$

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{g \mapsto [Y, X] \\ g \mapsto [Y, X] \\ h \mapsto [X, Y]}} \mathcal{F}(X, Y) \mid \begin{array}{c} (Y \triangleright e) e^{-1} \\ (X \triangleright f^{-1}) f \\ =1 \end{array} \right\rangle$$

 $\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}$$

If $\mathcal{G}=(E
ightarrow {\mathcal{G}},
ho)$ is finite and $\partial(E)=\{1_{\mathcal{G}}\}$ then:

 $l_{\mathcal{G}}(M) = \# \left\{ (X, Y, e, f) \in G^2 \times E^2 \mid \frac{XY = YX,}{(Y \triangleright e) - e - (X \triangleright f) + f = 0} \right\}.$

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{g \mapsto [Y, X] \\ g \mapsto [Y, X] \\ h \mapsto [X, Y]}} \mathcal{F}(X, Y) \mid \begin{array}{c} (Y_{\triangleright e}) e^{-1} \\ (X_{\triangleright f^{-1}}) f \\ =1 \end{array} \right\rangle$$

 $\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}$$

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$ then:

 $I_{\mathcal{G}}(M) = \# \left\{ (X, Y, e, f) \in G^2 \times E^2 \mid \frac{XY = YX,}{(Y \triangleright e) - e - (X \triangleright f) + f = 0} \right\}.$

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{g \mapsto [Y, X] \\ f \mapsto [Y, X] \\ h \mapsto [X, Y]}} \mathcal{F}(X, Y) \middle| \begin{array}{c} (Y \triangleright e) e^{-1} \\ (X \triangleright f^{-1}) f \\ =1 \end{array} \right\rangle$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1 \rangle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}$$

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$ then:

 $I_{\mathcal{G}}(M) = \#\left\{ (X, Y, e, f) \in G^2 \times E^2 \mid \underset{(Y \triangleright e) - e - (X \triangleright f) + f = 0}{XY = YX} \right\}.$

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{g \mapsto [Y, X] \\ f \mapsto [Y, X] \\ h \mapsto [X, Y]}} \mathcal{F}(X, Y) \middle| \begin{array}{c} (Y \triangleright e) e^{-1} \\ (X \triangleright f^{-1}) f \\ =1 \end{array} \right\rangle$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1
angle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}$$

If $\mathcal{G} = (E
ightarrow \mathcal{G}, \triangleright)$ is finite and $\partial(E) = \{1_G\}$ then:

 $I_{\mathcal{G}}(M) = \#\left\{ (X, Y, e, f) \in G^2 \times E^2 \mid \underset{(Y \triangleright e) - e - (X \triangleright f) + f = 0}{XY = YX} \right\}.$

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{g \mapsto [Y, X] \\ f \mapsto [Y, X] \\ h \mapsto [X, Y]}} \mathcal{F}(X, Y) \middle| \begin{array}{c} (Y \triangleright e) e^{-1} \\ (X \triangleright f^{-1}) f \\ =1 \end{array} \right\rangle$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1
angle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{< (Y \triangleright e) - e - (X \triangleright f) + f = 0 >}$$

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$ then:

 $I_{\mathcal{G}}(M) = \# \left\{ (X, Y, e, f) \in G^2 \times E^2 \mid \underset{(Y \triangleright e) - e - (X \triangleright f) + f = 0}{XY = YX} \right\}.$

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{g \mapsto [Y, X] \\ f \mapsto [Y, X] \\ h \mapsto [X, Y]}} \mathcal{F}(X, Y) \middle| \begin{array}{c} (Y \triangleright e) e^{-1} \\ (X \triangleright f^{-1}) f \\ =1 \end{array} \right\rangle$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1
angle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}.$$

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$ then:

$$I_{\mathcal{G}}(M) = \#\left\{(X, Y, e, f) \in G^2 \times E^2 \mid \frac{XY = YX,}{(Y \triangleright e) - e - (X \triangleright f) + f = 0}\right\}.$$

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{g \mapsto 1 \\ g \mapsto [Y, X] \\ h \mapsto [X, Y]}} \mathcal{F}(X, Y) \mid \begin{array}{c} (Y_{\triangleright e}) e^{-1} \\ (X_{\triangleright f^{-1}}) f \\ =1 \end{array} \right\rangle$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1
angle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}.$$

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$ then:

$$I_{\mathcal{G}}(M) = \#\left\{(X, Y, e, f) \in G^2 \times E^2 \mid \frac{XY = YX,}{(Y \triangleright e) - e - (X \triangleright f) + f = 0}\right\}.$$

Let $\mathcal{G} = (E \rightarrow G, \triangleright)$ be a finite crossed module.

1. $\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$ is able to separate between pairs of knotted surfaces with different knot groups. (For some choices of \mathcal{G} .)

2. Recal Shin Satoh's "tube-map" $T: \{Welded links\} \rightarrow \{Knotted Tori\}$

Suppose $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$. The welded knot invariant

 $K\mapsto I_{\mathcal{G}}(S^4\setminus T(K))$

More results on $I_{\mathcal{G}}(S^4 \setminus \Sigma)$ Let $\mathcal{G} = (E \to G, \triangleright)$ be a finite crossed module.

 Σ → I_G(S⁴ \ Σ) is able to separate between pairs of knotted surfaces with different knot groups. (For some choices of G.)

2. Recal Shin Satoh's "tube-map" $\mathcal{T}: \{ Welded \ links \} \rightarrow \{ Knotted \ Tori \}$

Suppose $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$. The welded knot invariant

 $K\mapsto I_{\mathcal{G}}(S^4\setminus T(K))$

Let $\mathcal{G} = (E \rightarrow G, \triangleright)$ be a finite crossed module.

1. $\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$ is able to separate between pairs of knotted surfaces with different knot groups. (For some choices of \mathcal{G} .)

2. Recal Shin Satoh's "tube-map" $\mathcal{T}: \{ Welded links \} \rightarrow \{ Knotted Tori \}$

Suppose $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{\mathbf{1}_G\}$. The welded knot invariant

 $K \mapsto l_{\mathcal{G}}(S^4 \setminus T(K))$

can be calculated from the biquandle on the set $G \times E$:

 $(x, a) \qquad (w, b)$ $(w, a + b - w^{-1} \triangleright a) \qquad (w^{-1}zw, w^{-1} \triangleright a)$

Let $\mathcal{G} = (E \rightarrow G, \triangleright)$ be a finite crossed module.

1. $\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$ is able to separate between pairs of knotted surfaces with different knot groups. (For some choices of \mathcal{G} .)

2. Recal Shin Satoh's "tube-map" $T: \{ Welded links \} \rightarrow \{ Knotted Tori \}$

Suppose $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{\mathbf{1}_G\}$. The welded knot invariant

 $K\mapsto I_{\mathcal{G}}(S^4\setminus T(K))$

can be calculated from the biquandle on the set $G \times E$:

 $(x, a) \qquad (w, b)$ $(w, a + b - w^{-1} \triangleright a) \qquad (w^{-1}zw, w^{-1} \triangleright a)$

Let $\mathcal{G} = (E \rightarrow G, \triangleright)$ be a finite crossed module.

1. $\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$ is able to separate between pairs of knotted surfaces with different knot groups. (For some choices of \mathcal{G} .)

2. Recal Shin Satoh's "tube-map"

 $T: \{ Welded \ links \} \rightarrow \{ Knotted \ Tori \}$

Suppose $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$. The welded knot invariant

 $K \mapsto I_{\mathcal{G}}(S^4 \setminus T(K))$

Let $\mathcal{G} = (E \rightarrow G, \triangleright)$ be a finite crossed module.

1. $\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$ is able to separate between pairs of knotted surfaces with different knot groups. (For some choices of \mathcal{G} .)

2. Recal Shin Satoh's "tube-map"

 $T: \{ Welded \ links \} \rightarrow \{ Knotted \ Tori \}$

Suppose $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$. The welded knot invariant

 $K\mapsto I_{\mathcal{G}}(S^4\setminus T(K))$

can be calculated from the biquandle on the set $G \times E$:

 $(w, a + b - w^{-1} \triangleright a)$ $(w^{-1}zw, w^{-1} \triangleright a)$

Let $\mathcal{G} = (E \rightarrow G, \triangleright)$ be a finite crossed module.

1. $\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$ is able to separate between pairs of knotted surfaces with different knot groups. (For some choices of \mathcal{G} .)

2. Recal Shin Satoh's "tube-map" $\mathcal{T} \colon \{ \text{Welded links} \} \to \{ \text{Knotted Tori} \}$

Suppose $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$. The welded knot invariant

 $K\mapsto I_{\mathcal{G}}(S^4\setminus T(K))$

Let $\mathcal{G} = (E \to G, \triangleright)$ be a finite crossed module.

1. $\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$ is able to separate between pairs of knotted surfaces with different knot groups. (For some choices of \mathcal{G} .)

2. Recal Shin Satoh's "tube-map" $\mathcal{T} \colon \{ \text{Welded links} \} \to \{ \text{Knotted Tori} \}$

Suppose $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$. The welded knot invariant

 $K \mapsto I_{\mathcal{G}}(S^4 \setminus T(K))$

can be calculated from the biquandle on the set $G \times E$:

(x, a) (w, b) (w, b) $(w, a + b - w^{-1} \triangleright a)$ $(w^{-1}zw, w^{-1} \triangleright a)$

Let $\mathcal{G} = (E \to G, \triangleright)$ be a finite crossed module.

1. $\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$ is able to separate between pairs of knotted surfaces with different knot groups. (For some choices of \mathcal{G} .)

2. Recal Shin Satoh's "tube-map" $\mathcal{T}: \{ Welded \ links \} \rightarrow \{ Knotted \ Tori \}$

Suppose $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$. The welded knot invariant

 $K \mapsto I_{\mathcal{G}}(S^4 \setminus T(K))$

Let $\mathcal{G} = (E \to G, \triangleright)$ be a finite crossed module.

1. $\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$ is able to separate between pairs of knotted surfaces with different knot groups. (For some choices of \mathcal{G} .)

2. Recal Shin Satoh's "tube-map" $\mathcal{T} \colon \{ \text{Welded links} \} \to \{ \text{Knotted Tori} \}$

Suppose $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$. The welded knot invariant

$$K \mapsto I_{\mathcal{G}}(S^4 \setminus T(K))$$

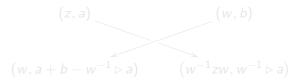
Let $\mathcal{G} = (E \to G, \triangleright)$ be a finite crossed module.

1. $\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$ is able to separate between pairs of knotted surfaces with different knot groups. (For some choices of \mathcal{G} .)

2. Recal Shin Satoh's "tube-map" $\mathcal{T} \colon \{ \text{Welded links} \} \to \{ \text{Knotted Tori} \}$

Suppose $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$. The welded knot invariant

$$K\mapsto I_{\mathcal{G}}(S^4\setminus T(K))$$

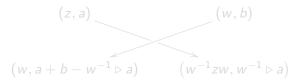


Let $\mathcal{G} = (E \to G, \triangleright)$ be a finite crossed module.

- 1. $\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$ is able to separate between pairs of knotted surfaces with different knot groups. (For some choices of \mathcal{G} .)
- 2. Recal Shin Satoh's "tube-map" $\mathcal{T}: \{ Welded \ links \} \rightarrow \{ Knotted \ Tori \}$

Suppose $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$. The welded knot invariant

$$K \mapsto I_{\mathcal{G}}(S^4 \setminus T(K))$$

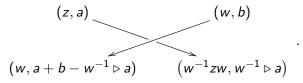


Let $\mathcal{G} = (E \rightarrow G, \triangleright)$ be a finite crossed module.

- 1. $\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$ is able to separate between pairs of knotted surfaces with different knot groups. (For some choices of \mathcal{G} .)
- 2. Recal Shin Satoh's "tube-map" $\mathcal{T} \colon \{ \text{Welded links} \} \to \{ \text{Knotted Tori} \}$

Suppose $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$. The welded knot invariant

$$K\mapsto I_{\mathcal{G}}(S^4\setminus T(K))$$

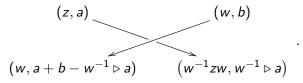


Let $\mathcal{G} = (E \rightarrow G, \triangleright)$ be a finite crossed module.

- 1. $\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$ is able to separate between pairs of knotted surfaces with different knot groups. (For some choices of \mathcal{G} .)
- 2. Recal Shin Satoh's "tube-map" $\mathcal{T} \colon \{ \text{Welded links} \} \to \{ \text{Knotted Tori} \}$

Suppose $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$. The welded knot invariant

$$K\mapsto I_{\mathcal{G}}(S^4\setminus T(K))$$



References:

- JFM: Categorical Groups, Knots and Knotted Surfaces, J. Knot Theory Ramifications 16 (2007), no 9, 1181-1217.
- JFM: On the Homotopy Type and the Fundamental Crossed Complex of the Skeletal Filtration of a CW-Complex. Homol. Homotopy Appl. Vol. 9 (2007), No. 1, pp.295-329.
- JFM., Kauffman L.H.: Invariants of Welded Virtual Knots Via Crossed Module Invariants of Knotted Surfaces, Compositio Mathematica. Volume 144, Issue 04, July 2008, pp 1046-1080.
- JFM.: The Fundamental Crossed Module of the Complement of a Knotted Surface. Transactions of the American Mathematical Society. 361 (2009), 4593-4630.
- Bullivant A, Martin P, and JFM Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. arXiv:1807.09551 [math-ph]
- Brown R., Higgins P.J.: Colimit Theorems for Relative Homotopy Groups, J. Pure Appl. Algebra 22 (1981), no. 1, 11-41
- S. Satoh, Virtual knot presentation of ribbon torus-knots, J. Knot Theory Ramifications 9 (2000), 531-542.